User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.3sp.hl.TZ0.2
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

Consider an unbiased tetrahedral (four-sided) die with faces labelled 1, 2, 3 and 4 respectively.

The random variable X represents the number of throws required to obtain a 1.

State the distribution of X.

[1]
a.

Show that the probability generating function, \(G\left( t \right)\), for X is given by \(G\left( t \right) = \frac{t}{{4 - 3t}}\).

[4]
b.

Find \(G'\left( t \right)\).

[2]
c.

Determine the mean number of throws required to obtain a 1.

[1]
d.

Markscheme

X is geometric (or negative binomial)      A1

[1 mark]

a.

\(G\left( t \right) = \frac{1}{4}t + \frac{1}{4}\left( {\frac{3}{4}} \right){t^2} + \frac{1}{4}{\left( {\frac{3}{4}} \right)^2}{t^3} +  \ldots \)     M1A1

recognition of GP \(\left( {{u_1} = \frac{1}{4}t,\,\,r = \frac{3}{4}t} \right)\)     (M1)

\( = \frac{{\frac{1}{4}t}}{{1 - \frac{3}{4}t}}\)     A1

leading to \(G\left( t \right) = \frac{t}{{4 - 3t}}\)     AG

[4 marks]

b.

attempt to use product or quotient rule      M1

\(G'\left( t \right) = \frac{4}{{{{\left( {4 - 3t} \right)}^2}}}\)     A1

[2 marks]

c.

4      A1

Note: Award A1FT to a candidate that correctly calculates the value of \(G'\left( 1 \right)\) from their \(G'\left( t \right)\).

[1 mark]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.1 » Cumulative distribution functions for both discrete and continuous distributions.
Show 30 related questions

View options