Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

User interface language: English | Español

Date November 2016 Marks available 1 Reference code 16N.3sp.hl.TZ0.4
Level HL only Paper Paper 3 Statistics and probability Time zone TZ0
Command term Write down Question number 4 Adapted from N/A

Question

Two independent discrete random variables X and Y have probability generating functions G(t) and H(t) respectively. Let Z=X+Y have probability generating function J(t).

Write down an expression for J(t) in terms of G(t) and H(t).

[1]
a.

By differentiating J(t), prove that

(i)     E(Z)=E(X)+E(Y);

(ii)     Var(Z)=Var(X)+Var(Y).

[10]
b.

Markscheme

J(t)=G(t)H(t)    A1

[1 mark]

a.

(i)     J(t)=G(t)H(t)+G(t)H(t)     M1A1

J(1)=G(1)H(1)+G(1)H(1)    M1

J(1)=G(1)+H(1)    A1

so E(Z)=E(X)+E(Y)     AG

(ii)     J(t)=G(t)H(t)+G(t)H(t)+G(t)H(t)+G(t)H(t)     M1A1

J(1)=G(1)H(1)+2G(1)H(1)+G(1)H(1)

=G(1)+2G(1)H(1)+H(1)    A1

Var(Z)=J(1)+J(1)(J(1))2    M1

=G(1)+2G(1)H(1)+H(1)+G(1)+H(1)(G(1)+H(1))2    A1

=G(1)+G(1)(G(1))2+H(1)+H(1)(H(1))2    A1

so Var(Z)=Var(X)+Var(Y)     AG

 

Note: If addition is wrongly used instead of multiplication in (a) it is inappropriate to give FT apart from the second M marks in each part, as the working is too simple.

 

[10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 7 - Option: Statistics and probability » 7.1 » Cumulative distribution functions for both discrete and continuous distributions.
Show 30 related questions

View options