Date | May 2018 | Marks available | 5 | Reference code | 18M.2.hl.TZ2.11 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Show that | Question number | 11 | Adapted from | N/A |
Question
A curve C is given by the implicit equation \(x + y - {\text{cos}}\left( {xy} \right) = 0\).
The curve \(xy = - \frac{\pi }{2}\) intersects C at P and Q.
Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\).
Find the coordinates of P and Q.
Given that the gradients of the tangents to C at P and Q are m1 and m2 respectively, show that m1 × m2 = 1.
Find the coordinates of the three points on C, nearest the origin, where the tangent is parallel to the line \(y = - x\).
Markscheme
attempt at implicit differentiation M1
\(1 + \frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{sin}}\left( {xy} \right) = 0\) A1M1A1
Note: Award A1 for first two terms. Award M1 for an attempt at chain rule A1 for last term.
\(\left( {1 + x\,{\text{sin}}\left( {xy} \right)} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 1 - y\,{\text{sin}}\left( {xy} \right)\) A1
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\) AG
[5 marks]
EITHER
when \(xy = - \frac{\pi }{2},\,\,{\text{cos}}\,xy = 0\) M1
\( \Rightarrow x + y = 0\) (A1)
OR
\(x - \frac{\pi }{{2x}} - {\text{cos}}\left( {\frac{{ - \pi }}{2}} \right) = 0\) or equivalent M1
\(x - \frac{\pi }{{2x}} = 0\) (A1)
THEN
therefore \({x^2} = \frac{\pi }{2}\left( {x = \pm \sqrt {\frac{\pi }{2}} } \right)\left( {x = \pm 1.25} \right)\) A1
\({\text{P}}\left( {\sqrt {\frac{\pi }{2}} ,\, - \sqrt {\frac{\pi }{2}} } \right),\,\,{\text{Q}}\left( { - \sqrt {\frac{\pi }{2}} ,\,\sqrt {\frac{\pi }{2}} } \right)\) or \(P\left( {1.25,\, - 1.25} \right),\,Q\left( { - 1.25,\,1.25} \right)\) A1
[4 marks]
m1 = \( - \left( {\frac{{1 - \sqrt {\frac{\pi }{2}} \times - 1}}{{1 + \sqrt {\frac{\pi }{2}} \times - 1}}} \right)\) M1A1
m2 = \( - \left( {\frac{{1 + \sqrt {\frac{\pi }{2}} \times - 1}}{{1 - \sqrt {\frac{\pi }{2}} \times - 1}}} \right)\) A1
m1 m2 = 1 AG
Note: Award M1A0A0 if decimal approximations are used.
Note: No FT applies.
[3 marks]
equate derivative to −1 M1
\(\left( {y - x} \right){\text{sin}}\left( {xy} \right) = 0\) (A1)
\(y = x,\,{\text{sin}}\left( {xy} \right) = 0\) R1
in the first case, attempt to solve \(2x = {\text{cos}}\left( {{x^2}} \right)\) M1
(0.486,0.486) A1
in the second case, \({\text{sin}}\left( {xy} \right) = 0 \Rightarrow xy = 0\) and \(x + y = 1\) (M1)
(0,1), (1,0) A1
[7 marks]