User interface language: English | Español

Date May 2015 Marks available 3 Reference code 15M.2.hl.TZ2.11
Level HL only Paper 2 Time zone TZ2
Command term Show that Question number 11 Adapted from N/A

Question

A curve is defined x25xy+y2=7x25xy+y2=7.

Show that dydx=5y2x2y5xdydx=5y2x2y5x.

[3]
a.

Find the equation of the normal to the curve at the point (6, 1)(6, 1).

[4]
b.

Find the distance between the two points on the curve where each tangent is parallel to the line y=xy=x.

[8]
c.

Markscheme

attempt at implicit differentiation     M1

2x5xdydx5y+2ydydx=02x5xdydx5y+2ydydx=0     A1A1

 

Note:     A1 for differentiation of x25xyx25xy, A1 for differentiation of y2y2 and 77.

 

2x5y+dydx(2y5x)=02x5y+dydx(2y5x)=0

dydx=5y2x2y5xdydx=5y2x2y5x     AG

[3 marks]

a.

dydx=5×12×62×15×6=14dydx=5×12×62×15×6=14     A1

gradient of normal =4=4     A1

equation of normal y=4x+cy=4x+c     M1

substitution of (6, 1)(6, 1)

y=4x+25y=4x+25     A1

 

Note:     Accept y1=4(x6)y1=4(x6)

[4 marks]

b.

setting 5y2x2y5x=15y2x2y5x=1     M1

y=xy=x     A1

substituting into original equation     M1

x2+5x2+x2=7x2+5x2+x2=7     (A1)

7x2=77x2=7

x=±1x=±1     A1

points (1, 1)(1, 1) and (1, 1)(1, 1)     (A1)

distance =8(=22)=8(=22)     (M1)A1

[8 marks]

Total [15 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Implicit differentiation.

View options