User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.2.hl.TZ2.10
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

Consider the curve with equation \({\left( {{x^2} + {y^2}} \right)^2} = 4x{y^2}\).

Use implicit differentiation to find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).

[5]
a.

Find the equation of the normal to the curve at the point (1, 1).

[3]
b.

Markscheme

METHOD 1

expanding the brackets first:

\({x^4} + 2{x^2}{y^2} + {y^4} = 4x{y^2}\)     M1

\(4{x^3} + 4x{y^2} + 4{x^2}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4{y^2} + 8xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1A1

 

Note:     Award M1 for an attempt at implicit differentiation.

     Award A1 for each side correct.

 

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {x^3} - x{y^2} + {y^2}}}{{x{y^2} - 2xy + {y^3}}}\) or equivalent     A1

METHOD 2

\(2\left( {{x^2} + {y^2}} \right)\left( {2x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = 4{y^2} + 8xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1A1

 

Note:     Award M1 for an attempt at implicit differentiation.

     Award A1 for each side correct.

 

\(\left( {{x^2} + {y^2}} \right)\left( {x + y\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = {y^2} + 2xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\)

\({x^3} + {x^2}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + {y^2}x + {y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = {y^2} + 2xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {x^3} - x{y^2} + {y^2}}}{{y{x^2} - 2xy + {y^3}}}\) or equivalent     A1

[5 marks]

a.

METHOD 1

at (1, 1), \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) is undefined     M1A1

\(y = 1\)     A1

METHOD 2

gradient of normal \( =  - \frac{1}{{\frac{{{\text{d}}y}}{{{\text{d}}x}}}} =  - \frac{{\left( {y{x^2} - 2xy + {y^3}} \right)}}{{\left( { - {x^3} - x{y^2} + {y^2}} \right)}}\)     M1

at (1, 1) gradient \( = 0\)     A1

\(y = 1\)     A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Implicit differentiation.

View options