Date | May 2014 | Marks available | 5 | Reference code | 14M.2.hl.TZ2.10 |
Level | HL only | Paper | 2 | Time zone | TZ2 |
Command term | Find | Question number | 10 | Adapted from | N/A |
Question
Consider the curve with equation \({\left( {{x^2} + {y^2}} \right)^2} = 4x{y^2}\).
Use implicit differentiation to find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).
Find the equation of the normal to the curve at the point (1, 1).
Markscheme
METHOD 1
expanding the brackets first:
\({x^4} + 2{x^2}{y^2} + {y^4} = 4x{y^2}\) M1
\(4{x^3} + 4x{y^2} + 4{x^2}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4{y^2} + 8xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\) M1A1A1
Note: Award M1 for an attempt at implicit differentiation.
Award A1 for each side correct.
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {x^3} - x{y^2} + {y^2}}}{{x{y^2} - 2xy + {y^3}}}\) or equivalent A1
METHOD 2
\(2\left( {{x^2} + {y^2}} \right)\left( {2x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = 4{y^2} + 8xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\) M1A1A1
Note: Award M1 for an attempt at implicit differentiation.
Award A1 for each side correct.
\(\left( {{x^2} + {y^2}} \right)\left( {x + y\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = {y^2} + 2xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\)
\({x^3} + {x^2}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + {y^2}x + {y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = {y^2} + 2xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\) M1
\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {x^3} - x{y^2} + {y^2}}}{{y{x^2} - 2xy + {y^3}}}\) or equivalent A1
[5 marks]
METHOD 1
at (1, 1), \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) is undefined M1A1
\(y = 1\) A1
METHOD 2
gradient of normal \( = - \frac{1}{{\frac{{{\text{d}}y}}{{{\text{d}}x}}}} = - \frac{{\left( {y{x^2} - 2xy + {y^3}} \right)}}{{\left( { - {x^3} - x{y^2} + {y^2}} \right)}}\) M1
at (1, 1) gradient \( = 0\) A1
\(y = 1\) A1
[3 marks]