User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.2.hl.TZ2.7
Level HL only Paper 2 Time zone TZ2
Command term Determine Question number 7 Adapted from N/A

Question

A point P moves in a straight line with velocity \(v\) ms−1 given by \(v\left( t \right) = {{\text{e}}^{ - t}} - 8{t^2}{{\text{e}}^{ - 2t}}\) at time t seconds, where t ≥ 0.

Determine the first time t1 at which P has zero velocity.

[2]
a.

Find an expression for the acceleration of P at time t.

[2]
b.i.

Find the value of the acceleration of P at time t1.

[1]
b.ii.

Markscheme

attempt to solve \(v\left( t \right) = 0\) for t or equivalent     (M1)

t1 = 0.441(s)     A1

[2 marks]

a.

\(a\left( t \right) = \frac{{{\text{d}}v}}{{{\text{d}}t}} =  - {{\text{e}}^{ - t}} - 16t{{\text{e}}^{ - 2t}} + 16{t^2}{{\text{e}}^{ - 2t}}\)      M1A1

Note: Award M1 for attempting to differentiate using the product rule.

[2 marks]

b.i.

\(a\left( {{t_1}} \right) =  - 2.28\) (ms−2)      A1

[1 mark]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 6 - Core: Calculus » 6.6 » Kinematic problems involving displacement \(s\), velocity \(v\) and acceleration \(a\).
Show 43 related questions

View options