Date | November 2017 | Marks available | 5 | Reference code | 17N.1.hl.TZ0.5 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
A particle moves in a straight line such that at time \(t\) seconds \((t \geqslant 0)\), its velocity \(v\), in \({\text{m}}{{\text{s}}^{ - 1}}\), is given by \(v = 10t{{\text{e}}^{ - 2t}}\). Find the exact distance travelled by the particle in the first half-second.
Markscheme
\(s = \int\limits_0^{\frac{1}{2}} {10t{{\text{e}}^{ - 2t}}{\text{d}}t} \)
attempt at integration by parts M1
\( = \left[ { - 5t{{\text{e}}^{ - 2t}}} \right]_0^{\frac{1}{2}} - \int\limits_0^{\frac{1}{2}} { - 5{{\text{e}}^{ - 2t}}{\text{d}}t} \) A1
\( = \left[ { - 5t{{\text{e}}^{ - 2t}} - \frac{5}{2}{{\text{e}}^{ - 2t}}} \right]_0^{\frac{1}{2}}\) (A1)
Note: Condone absence of limits (or incorrect limits) and missing factor of 10 up to this point.
\(s = \int\limits_0^{\frac{1}{2}} {10t{{\text{e}}^{ - 2t}}{\text{d}}t} \) (M1)
\( = - 5{{\text{e}}^{ - 1}} + \frac{5}{2}{\text{ }}\left( { = \frac{{ - 5}}{{\text{e}}} + \frac{5}{2}} \right){\text{ }}\left( { = \frac{{5{\text{e}} - 10}}{{2{\text{e}}}}} \right)\) A1
[5 marks]