User interface language: English | Español

Date May 2016 Marks available 4 Reference code 16M.2.hl.TZ2.8
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 8 Adapted from N/A

Question

A particle moves such that its velocity \(v\,{\text{m}}{{\text{s}}^{ - 1}}\) is related to its displacement \(s\,{\text{m}}\), by the equation \(v(s) = \arctan (\sin s),{\text{ }}0 \leqslant s \leqslant 1\). The particle’s acceleration is \(a\,{\text{m}}{{\text{s}}^{ - 2}}\).

Find the particle’s acceleration in terms of \(s\).

[4]
a.

Using an appropriate sketch graph, find the particle’s displacement when its acceleration is \(0.25{\text{ m}}{{\text{s}}^{ - 2}}\).

[2]
b.

Markscheme

\(\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{{\cos s}}{{{{\sin }^2}s + 1}}\)    M1A1

\(a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\)    (M1)

\(a = \frac{{\arctan (\sin s)\cos s}}{{{{\sin }^2}s + 1}}\)    A1

[4 marks]

a.

EITHER

M16/5/MATHL/HP2/ENG/TZ2/08.b_01/M     (M1)

OR

M16/5/MATHL/HP2/ENG/TZ2/08.b_02/M     (M1)

THEN

\(s = 0.296,{\text{ }}0.918{\text{ (m)}}\)     A1

[2 marks]

b.

Examiners report

In part (a), a large number of candidates thought that \(\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{{\text{d}}v}}{{{\text{d}}s}}\) rather than \(\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{{\text{d}}s}}{{{\text{d}}t}} \times \frac{{{\text{d}}v}}{{{\text{d}}s}} = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\).

a.

In part (b), quite a few of these candidates then went on to find a value of \(s\) that was outside the domain \(0 \leqslant s \leqslant 1\).

b.

Syllabus sections

Topic 6 - Core: Calculus » 6.6 » Kinematic problems involving displacement \(s\), velocity \(v\) and acceleration \(a\).
Show 43 related questions

View options