Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.2.hl.TZ2.14
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 14 Adapted from N/A

Question

Particle A moves such that its velocity v ms1, at time t seconds, is given by v(t)=t12+t4, t0.

Particle B moves such that its velocity v ms1 is related to its displacement s m, by the equation v(s)=arcsin(s).

Sketch the graph of y=v(t). Indicate clearly the local maximum and write down its coordinates.

[2]
a.

Use the substitution u=t2 to find t12+t4dt.

[4]
b.

Find the exact distance travelled by particle A between t=0 and t=6 seconds.

Give your answer in the form karctan(b), k, bR.

 

[3]
c.

Find the acceleration of particle B when s=0.1 m.

[3]
d.

Markscheme

(a)
    A1

A1 for correct shape and correct domain

(1.41, 0.0884) (2, 216)     A1

[2 marks]

a.

EITHER

u=t2

dudt=2t     A1

OR

t=u12

dtdu=12u12     A1

THEN

t12+t4dt=12du12+u2     M1

=1212arctan(u12)(+c)     M1

=143arctan(t223)(+c) or equivalent     A1

[4 marks]

b.

60t12+t4dt     (M1)

=[143arctan(t223)]60     M1

=143(arctan(3623)) (=143(arctan(183))) (m)     A1

 

Note:     Accept 312arctan(63) or equivalent.

 

[3 marks]

c.

dvds=12s(1s)     (A1)

a=vdvds

a=arcsin(s)×12s(1s)     (M1)

a=arcsin(0.1)×120.1×0.9

a=0.536 (ms2)     A1

[3 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 6 - Core: Calculus » 6.6 » Kinematic problems involving displacement s, velocity v and acceleration a.
Show 35 related questions

View options