Date | May 2018 | Marks available | 2 | Reference code | 18M.1.hl.TZ2.11 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 11 | Adapted from | N/A |
Question
It is given that \({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\).
Show that \({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{2}{\text{lo}}{{\text{g}}_r}\,x\) where \(r,\,x \in {\mathbb{R}^ + }\).
Express \(y\) in terms of \(x\). Give your answer in the form \(y = p{x^q}\), where p , q are constants.
The region R, is bounded by the graph of the function found in part (b), the x-axis, and the lines \(x = 1\) and \(x = \alpha \) where \(\alpha > 1\). The area of R is \(\sqrt 2 \).
Find the value of \(\alpha \).
Markscheme
METHOD 1
\({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{{{\text{lo}}{{\text{g}}_r}\,{r^2}}}\left( { = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{{{\text{2}}\,{\text{lo}}{{\text{g}}_r}\,r}}} \right)\) M1A1
\( = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{2}\) AG
[2 marks]
METHOD 2
\({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{{{\text{lo}}{{\text{g}}_x}\,{r^2}}}\) M1
\( = \frac{1}{{2\,{\text{lo}}{{\text{g}}_x}\,r}}\) A1
\( = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{2}\) AG
[2 marks]
METHOD 1
\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\)
\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,2{x^2} = 0\) M1
\({\text{lo}}{{\text{g}}_2}\,y + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2{x^2} = 0\) M1
\({\text{lo}}{{\text{g}}_2}\,y = - \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2{x^2}\)
\({\text{lo}}{{\text{g}}_2}\,y = {\text{lo}}{{\text{g}}_2}\left( {\frac{1}{{\sqrt {2x} }}} \right)\) M1A1
\(y = \frac{1}{{\sqrt 2 }}{x^{ - 1}}\) A1
Note: For the final A mark, \(y\) must be expressed in the form \(p{x^q}\).
[5 marks]
METHOD 2
\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\)
\({\text{lo}}{{\text{g}}_2}\,y + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,x + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2x = 0\) M1
\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_2}\,{x^{\frac{1}{2}}} + {\text{lo}}{{\text{g}}_2}\,{\left( {2x} \right)^{\frac{1}{2}}} = 0\) M1
\({\text{lo}}{{\text{g}}_2}\,\left( {\sqrt 2 xy} \right) = 0\) M1
\(\sqrt 2 xy = 1\) A1
\(y = \frac{1}{{\sqrt 2 }}{x^{ - 1}}\) A1
Note: For the final A mark, \(y\) must be expressed in the form \(p{x^q}\).
[5 marks]
the area of R is \(\int\limits_1^\alpha {\frac{1}{{\sqrt 2 }}} {x^{ - 1}}{\text{d}}x\) M1
\( = \left[ {\frac{1}{{\sqrt 2 }}{\text{ln}}\,x} \right]_1^\alpha \) A1
\( = \frac{1}{{\sqrt 2 }}{\text{ln}}\,\alpha \) A1
\(\frac{1}{{\sqrt 2 }}{\text{ln}}\,\alpha = \sqrt 2 \) M1
\(\alpha = {{\text{e}}^2}\) A1
Note: Only follow through from part (b) if \(y\) is in the form \(y = p{x^q}\)
[5 marks]