Processing math: 100%

User interface language: English | Español

Date May 2012 Marks available 5 Reference code 12M.1.hl.TZ1.8
Level HL only Paper 1 Time zone TZ1
Command term Solve Question number 8 Adapted from N/A

Question

Solve the equation 2log3(x+7)=log132x .

Markscheme

log3(9x+7)=log312x     M1M1A1

Note: Award M1 for changing to single base, M1 for incorporating the 2 into a log and A1 for a correct equation with maximum one log expression each side.

 

x+7=18x     M1

x=717     A1

[5 marks] 

Examiners report

Some good solutions to this question and few candidates failed to earn marks on the question. Many were able to change the base of the logs, and many were able to deal with the 2, but of those who managed both, poor algebraic skills were often evident. Many students attempted to change the base into base 10, resulting in some complicated algebra, few of which managed to complete successfully. 

Syllabus sections

Topic 1 - Core: Algebra » 1.2 » Exponents and logarithms.

View options