Date | May 2014 | Marks available | 5 | Reference code | 14M.1.hl.TZ2.2 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Express and Solve | Question number | 2 | Adapted from | N/A |
Question
Solve the equation \({8^{x - 1}} = {6^{3x}}\). Express your answer in terms of \(\ln 2\) and \(\ln 3\).
Markscheme
METHOD 1
\({2^{3(x - 1)}} = {(2 \times 3)^{3x}}\) M1
Note: Award M1 for writing in terms of 2 and 3.
\({2^{3x}} \times {2^{ - 3}} = {2^{3x}} \times {3^{3x}}\)
\({2^{ - 3}} = {3^{3x}}\) A1
\(\ln \left( {{2^{ - 3}}} \right) = \ln \left( {{3^{3x}}} \right)\) (M1)
\( - 3\ln 2 = 3x\ln 3\) A1
\(x = - \frac{{\ln 2}}{{\ln 3}}\) A1
METHOD 2
\(\ln {8^{x - 1}} = \ln {6^{3x}}\) (M1)
\((x - 1)\ln {2^3} = 3x\ln (2 \times 3)\) M1A1
\(3x\ln 2 - 3\ln 2 = 3x\ln 2 + 3x\ln 3\) A1
\(x = - \frac{{\ln 2}}{{\ln 3}}\) A1
METHOD 3
\(\ln {8^{x - 1}} = \ln {6^{3x}}\) (M1)
\((x - 1)\ln 8 = 3x\ln 6\) A1
\(x = \frac{{\ln 8}}{{\ln 8 - 3\ln 6}}\) A1
\(x = \frac{{3\ln 2}}{{\ln \left( {\frac{{{2^3}}}{{{6^3}}}} \right)}}\) M1
\(x = - \frac{{\ln 2}}{{\ln 3}}\) A1
[5 marks]