Date | May 2014 | Marks available | 5 | Reference code | 14M.1.hl.TZ2.2 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Express and Solve | Question number | 2 | Adapted from | N/A |
Question
Solve the equation 8x−1=63x. Express your answer in terms of ln2 and ln3.
Markscheme
METHOD 1
23(x−1)=(2×3)3x M1
Note: Award M1 for writing in terms of 2 and 3.
23x×2−3=23x×33x
2−3=33x A1
ln(2−3)=ln(33x) (M1)
−3ln2=3xln3 A1
x=−ln2ln3 A1
METHOD 2
ln8x−1=ln63x (M1)
(x−1)ln23=3xln(2×3) M1A1
3xln2−3ln2=3xln2+3xln3 A1
x=−ln2ln3 A1
METHOD 3
ln8x−1=ln63x (M1)
(x−1)ln8=3xln6 A1
x=ln8ln8−3ln6 A1
x=3ln2ln(2363) M1
x=−ln2ln3 A1
[5 marks]
Examiners report
[N/A]