Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.1.hl.TZ1.5
Level HL only Paper 1 Time zone TZ1
Command term Solve Question number 5 Adapted from N/A

Question

Solve (lnx)2(ln2)(lnx)<2(ln2)2.

Markscheme

(lnx)2(ln2)(lnx)2(ln2)2(=0)

EITHER

lnx=ln2±(ln2)2+8(ln2)22     M1

=ln2±3ln22     A1

OR

(lnx2ln2)(lnx+2ln2)(=0)     M1A1

THEN

lnx=2ln2 or ln2     A1

x=4 or x=12       (M1)A1   

Note: (M1) is for an appropriate use of a log law in either case, dependent on the previous M1 being awarded, A1 for both correct answers.

solution is 12<x<4     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2 - Core: Functions and equations » 2.7 » Solutions of g(x) .

View options