Date | May 2018 | Marks available | 6 | Reference code | 18M.1.hl.TZ1.5 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Solve | Question number | 5 | Adapted from | N/A |
Question
Solve \({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) < 2{\left( {{\text{ln}}\,2} \right)^2}\).
Markscheme
\({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) - 2{\left( {{\text{ln}}\,2} \right)^2}\left( { = 0} \right)\)
EITHER
\({\text{ln}}\,x = \frac{{{\text{ln}}\,2 \pm \sqrt {{{\left( {{\text{ln}}\,2} \right)}^2} + 8{{\left( {{\text{ln}}\,2} \right)}^2}} }}{2}\) M1
\( = \frac{{{\text{ln}}\,2 \pm 3\,{\text{ln}}\,2}}{2}\) A1
OR
\(\left( {{\text{ln}}\,x - 2\,{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x + 2\,{\text{ln}}\,2} \right)\left( { = 0} \right)\) M1A1
THEN
\({\text{ln}}\,x = 2\,{\text{ln}}\,2\) or \( - {\text{ln}}\,2\) A1
\( \Rightarrow x = 4\) or \(x = \frac{1}{2}\) (M1)A1
Note: (M1) is for an appropriate use of a log law in either case, dependent on the previous M1 being awarded, A1 for both correct answers.
solution is \(\frac{1}{2} < x < 4\) A1
[6 marks]