User interface language: English | Español

Date May 2018 Marks available 6 Reference code 18M.1.hl.TZ1.5
Level HL only Paper 1 Time zone TZ1
Command term Solve Question number 5 Adapted from N/A

Question

Solve \({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) < 2{\left( {{\text{ln}}\,2} \right)^2}\).

Markscheme

\({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) - 2{\left( {{\text{ln}}\,2} \right)^2}\left( { = 0} \right)\)

EITHER

\({\text{ln}}\,x = \frac{{{\text{ln}}\,2 \pm \sqrt {{{\left( {{\text{ln}}\,2} \right)}^2} + 8{{\left( {{\text{ln}}\,2} \right)}^2}} }}{2}\)     M1

\( = \frac{{{\text{ln}}\,2 \pm 3\,{\text{ln}}\,2}}{2}\)     A1

OR

\(\left( {{\text{ln}}\,x - 2\,{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x + 2\,{\text{ln}}\,2} \right)\left( { = 0} \right)\)     M1A1

THEN

\({\text{ln}}\,x = 2\,{\text{ln}}\,2\) or \( - {\text{ln}}\,2\)     A1

\( \Rightarrow x = 4\) or \(x = \frac{1}{2}\)       (M1)A1   

Note: (M1) is for an appropriate use of a log law in either case, dependent on the previous M1 being awarded, A1 for both correct answers.

solution is \(\frac{1}{2} < x < 4\)     A1

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2 - Core: Functions and equations » 2.7 » Solutions of \(g\left( x \right) \geqslant f\left( x \right)\) .

View options