User interface language: English | Español

Date May 2016 Marks available 6 Reference code 16M.2.hl.TZ2.3
Level HL only Paper 2 Time zone TZ2
Command term Solve Question number 3 Adapted from N/A

Question

Solve the simultaneous equations

\[\ln \frac{y}{x} = 2\]

\[\ln {x^2} + \ln {y^3} = 7.\]

Markscheme

METHOD 1

\(\ln \frac{y}{x} = 2 \Rightarrow \ln x + \ln y = 2\)    A1

\(\ln {x^2} + \ln {y^3} = 7 \Rightarrow 2\ln x + 3\ln y = 7\)    (M1)A1

attempting to solve for \(x\) and \(y\) \(\left( {{\text{to obtain }}\ln x = \frac{1}{5}{\text{ and }}\ln y = \frac{{11}}{5}} \right)\)     (M1)

\(x = {{\text{e}}^{\frac{1}{5}}}{\text{ }}( = 1.22)\)    A1

\(y = {{\text{e}}^{\frac{{11}}{5}}}{\text{ }}( = 9.03)\)    A1

METHOD 2

\(\ln \frac{y}{x} = 2 \Rightarrow y = {{\text{e}}^2}x\)    A1

\(\ln {x^2} + \ln {{\text{e}}^6}{x^3} = 7\)    (M1)A1

attempting to solve for \(x\)     (M1)

\(x = {{\text{e}}^{\frac{1}{5}}}{\text{ }}( = 1.22)\)    A1

\(y = {{\text{e}}^{\frac{{11}}{5}}}{\text{ }}( = 9.03)\)    A1

METHOD 3

\(\ln \frac{y}{x} = 2 \Rightarrow y = {{\text{e}}^2}x\)    A1

\(\ln {x^2} + \ln {y^3} = 7 \Rightarrow \ln ({x^2}{y^3}) = 7\)    A1

\({x^2}{y^3} = {{\text{e}}^7}\)    (M1)

substituting \(y = {e^2}x\) into \({x^2}{y^3} = {{\text{e}}^7}\) (to obtain \({{\text{e}}^6}{x^5} = {{\text{e}}^7}\))     M1

\(x = {{\text{e}}^{\frac{1}{5}}}{\text{ }}( = 1.22)\)    A1

\(y = {{\text{e}}^{\frac{{11}}{5}}}{\text{ }}( = 9.03)\)    A1

[6 marks]

Examiners report

Reasonably well done. Candidates who did not obtain the correct solution generally made an error when attempting to apply logarithmic or exponential laws and hence made erroneous substitutions.

Syllabus sections

Topic 1 - Core: Algebra » 1.2 » Exponents and logarithms.

View options