Date | November 2016 | Marks available | 5 | Reference code | 16N.1.hl.TZ0.7 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Solve | Question number | 7 | Adapted from | N/A |
Question
Solve the equation \({4^x} + {2^{x + 2}} = 3\).
Markscheme
attempt to form a quadratic in \({2^x}\) M1
\({({2^x})^2} + 4 \bullet {2^x} - 3 = 0\) A1
\({2^x} = \frac{{ - 4 \pm \sqrt {16 + 12} }}{2}{\text{ }}\left( { = - 2 \pm \sqrt 7 } \right)\) M1
\({2^x} = - 2 + \sqrt 7 {\text{ }}\left( {{\text{as }} - 2 - \sqrt 7 < 0} \right)\) R1
\(x = {\log _2}\left( { - 2 + \sqrt 7 } \right){\text{ }}\left( {x = \frac{{\ln \left( { - 2 + \sqrt 7 } \right)}}{{\ln 2}}} \right)\) A1
Note: Award R0 A1 if final answer is \(x = {\log _2}\left( { - 2 + \sqrt 7 } \right)\).
[5 marks]