User interface language: English | Español

Date May 2018 Marks available 5 Reference code 18M.1.hl.TZ1.10
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 10 Adapted from N/A

Question

The following figure shows a square based pyramid with vertices at O(0, 0, 0), A(1, 0, 0), B(1, 1, 0), C(0, 1, 0) and D(0, 0, 1).

The Cartesian equation of the plane \({\Pi _2}\), passing through the points B , C and D , is \(y + z = 1\).

The plane \({\Pi _3}\) passes through O and is normal to the line BD.

\({\Pi _3}\) cuts AD and BD at the points P and Q respectively.

Find the Cartesian equation of the plane \({\Pi _1}\), passing through the points A , B and D.

[3]
a.

Find the angle between the faces ABD and BCD.

[4]
b.

Find the Cartesian equation of \({\Pi _3}\).

[3]
c.

Show that P is the midpoint of AD.

[4]
d.

Find the area of the triangle OPQ.

[5]
e.

Markscheme

recognising normal to plane or attempting to find cross product of two vectors lying in the plane      (M1)

for example, \(\mathop {{\text{AB}}}\limits^ \to \,\, \times \mathop {{\text{AD}}}\limits^ \to = \left( \begin{gathered}
0 \hfill \\
1 \hfill \\
0 \hfill \\
\end{gathered} \right) \times \left( \begin{gathered}
- 1 \hfill \\
\,0 \hfill \\
\,1 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
1 \hfill \\
0 \hfill \\
1 \hfill \\
\end{gathered} \right)\)     (A1)

\({\Pi _1}\,{\text{:}}\,\,x + z = 1\)     A1

[3 marks]

a.

EITHER

\(\left( \begin{gathered}
1 \hfill \\
0 \hfill \\
1 \hfill \\
\end{gathered} \right) \bullet \left( \begin{gathered}
0 \hfill \\
1 \hfill \\
1 \hfill \\
\end{gathered} \right) = 1 = \sqrt 2 \sqrt 2 \,{\text{cos}}\,\theta \)     M1A1

OR

\(\left| {\left( \begin{gathered}
1 \hfill \\
0 \hfill \\
1 \hfill \\
\end{gathered} \right) \times \left( \begin{gathered}
0 \hfill \\
1 \hfill \\
1 \hfill \\
\end{gathered} \right)} \right| = \sqrt 3 = \sqrt 2 \sqrt 2 \,{\text{sin}}\,\theta \)     M1A1

Note: M1 is for an attempt to find the scalar or vector product of the two normal vectors.

\( \Rightarrow \theta  = 60^\circ \left( { = \frac{\pi }{3}} \right)\)     A1

angle between faces is \(20^\circ \left( { = \frac{{2\pi }}{3}} \right)\)     A1

[4 marks]

b.

\(\mathop {{\text{DB}}}\limits^ \to = \left( \begin{gathered}
\,1 \hfill \\
\,1 \hfill \\
- 1 \hfill \\
\end{gathered} \right)\) or \(\mathop {{\text{BD}}}\limits^ \to = \left( \begin{gathered}
- 1 \hfill \\
- 1 \hfill \\
\,1 \hfill \\
\end{gathered} \right)\)     (A1)

\({\Pi _3}\,{\text{:}}\,\,x + y - z = k\)     (M1)

\({\Pi _3}\,{\text{:}}\,\,x + y - z = 0\)     A1

[3 marks]

c.

METHOD 1

line AD : (r =)\(\left( \begin{gathered}
0 \hfill \\
0 \hfill \\
1 \hfill \\
\end{gathered} \right) + \lambda \left( \begin{gathered}
\,1 \hfill \\
\,0 \hfill \\
- 1 \hfill \\
\end{gathered} \right)\)     M1A1

intersects \({\Pi _3}\) when \(\lambda  - \left( {1 - \lambda } \right) = 0\)     M1

so \(\lambda  = \frac{1}{2}\)     A1

hence P is the midpoint of AD      AG

 

METHOD 2

midpoint of AD is (0.5, 0, 0.5)      (M1)A1

substitute into \(x + y - z = 0\)     M1

0.5 + 0.5 − 0.5 = 0     A1

hence P is the midpoint of AD     AG

[4 marks]

d.

METHOD 1

\({\text{OP}} = \frac{1}{{\sqrt 2 }},\,\,{\text{O}}\mathop {\text{P}}\limits^ \wedge  {\text{Q}} = 90^\circ ,\,\,{\text{O}}\mathop {\text{Q}}\limits^ \wedge  {\text{P}} = 60^\circ \)      A1A1A1

\({\text{PQ}} = \frac{1}{{\sqrt 6 }}\)     A1

area \( = \frac{1}{{2\sqrt {12} }} = \frac{1}{{4\sqrt 3 }} = \frac{{\sqrt 3 }}{{12}}\)     A1

 

METHOD 2

line BD : ( =)\(\left( \begin{gathered}
1 \hfill \\
1 \hfill \\
0 \hfill \\
\end{gathered} \right) + \lambda \left( \begin{gathered}
- 1 \hfill \\
- 1 \hfill \\
\,1 \hfill \\
\end{gathered} \right)\)

\( \Rightarrow \lambda  = \frac{2}{3}\)     (A1)

\(\mathop {{\text{OQ}}}\limits^ \to = \left( \begin{gathered}
\frac{1}{3} \hfill \\
\frac{1}{3} \hfill \\
\frac{2}{3} \hfill \\
\end{gathered} \right)\)    A1

area = \(\frac{1}{2}\left| {\mathop {{\text{OP}}}\limits^ \to  \, \times \mathop {{\text{OQ}}}\limits^ \to  } \right|\)     M1

\(\mathop {{\text{OP}}}\limits^ \to = \left( \begin{gathered}
\frac{1}{2} \hfill \\
0 \hfill \\
\frac{1}{2} \hfill \\
\end{gathered} \right)\)    A1

Note: This A1 is dependent on M1.

area = \(\frac{{\sqrt 3 }}{{12}}\)     A1

[5 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 4 - Core: Vectors » 4.7 » Intersections of: a line with a plane; two planes; three planes.
Show 27 related questions

View options