Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.1.hl.TZ1.12
Level HL only Paper 1 Time zone TZ1
Command term Find Question number 12 Adapted from N/A

Question

Show that the points O(0, 0, 0),  A(6, 0, 0), B(6, 24, 12), C(0, 24, 12) form a square.

[3]
a.

Find the coordinates of M, the mid-point of [OB].

[1]
b.

Show that an equation of the plane Π, containing the square OABC, is y+2z=0.

[3]
c.

Find a vector equation of the line L, through M, perpendicular to the plane Π.

[3]
d.

Find the coordinates of D, the point of intersection of the line L with the plane whose equation is y=0.

[3]
e.

Find the coordinates of E, the reflection of the point D in the plane Π.

[3]
f.

(i)     Find the angle OˆDA.

(ii)     State what this tells you about the solid OABCDE.

[6]
g.

Markscheme

|OA|=|CB|=|OC|=|AB|=6   (therefore a rhombus)     A1A1

 

Note:     Award A1 for two correct lengths, A2 for all four.

 

Note: Award A1A0 for OA=CB=(600)orOC=AB=(02412) if no magnitudes are shown.

 

OAgOC=(600)g(02412)=0   (therefore a square)     A1

 

Note:     Other arguments are possible with a minimum of three conditions.

 

[3 marks]

a.

M(3, 242, 122)(=(3, 6, 3))     A1

[1 mark]

b.

METHOD 1

OA×OC=(600)×(02412)=(0612624)(=(0123126))     M1A1

 

Note:     Candidates may use other pairs of vectors.

 

equation of plane is 612y624z=d

any valid method showing that d=0     M1

Π:y+2z=0     AG

 

METHOD 2

equation of plane is ax+by+cz=d

substituting O to find d=0     (M1)

substituting two points (A, B, C or M)     M1

eg

6a=0, 24b+12c=0     A1

Π:y+2z=0     AG

[3 marks]

c.

\boldsymbol{r} = \left( \begin{array}{c}3\\ - \sqrt 6 \\\sqrt 3 \end{array} \right) + \lambda \left( \begin{array}{l}0\\1\\\sqrt 2 \end{array} \right)     A1A1A1

 

Note:     Award A1 for r = , A1A1 for two correct vectors.

 

[3 marks]

d.

Using y = 0 to find \lambda     M1

Substitute their \lambda into their equation from part (d)     M1

D has coordinates \left( {{\text{3, 0, 3}}\sqrt 3 } \right)     A1

[3 marks]

e.

\lambda for point E is the negative of the \lambda for point D     (M1)

 

Note:     Other possible methods may be seen.

 

E has coordinates \left( {{\text{3, }} - 2\sqrt 6 ,{\text{ }} - \sqrt 3 } \right)     A1A1

 

Note:     Award A1 for each of the y and z coordinates.

 

[3 marks]

f.

(i)     \overrightarrow {{\text{DA}}} {\text{ g}}\overrightarrow {{\text{DO}}}  = \left( \begin{array}{c}3\\0\\ - 3\sqrt 3 \end{array} \right){\rm{g}}\left( \begin{array}{c} - 3\\0\\ - 3\sqrt 3 \end{array} \right) = 18     M1A1

\cos {\rm{O\hat DA}} = \frac{{18}}{{\sqrt {36} \sqrt {36} }} = \frac{1}{2}     M1

hence {\rm{O\hat DA}} = 60^\circ     A1

 

Note:     Accept method showing OAD is equilateral.

 

(ii)     OABCDE is a regular octahedron (accept equivalent description)     A2

 

Note:     A2 for saying it is made up of 8 equilateral triangles

     Award A1 for two pyramids, A1 for equilateral triangles.

     (can be either stated or shown in a sketch – but there must be clear indication the triangles are equilateral)

 

[6 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.

Syllabus sections

Topic 4 - Core: Vectors » 4.7 » Intersections of: a line with a plane; two planes; three planes.

View options