Date | May 2014 | Marks available | 4 | Reference code | 14M.1.hl.TZ2.12 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 12 | Adapted from | N/A |
Question
Consider the plane Π1, parallel to both lines L1 and L2. Point C lies in the plane Π1.
The line L3 has vector equation \boldsymbol{r} = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}k\\1\\ - 1\end{array} \right).
The plane {\mathit{\Pi} _2} has Cartesian equation x + y = 12.
The angle between the line {L_3} and the plane {\mathit{\Pi} _2} is 60°.
Given the points A(1, 0, 4), B(2, 3, −1) and C(0, 1, − 2) , find the vector equation of the line {L_1} passing through the points A and B.
The line {L_2} has Cartesian equation \frac{{x - 1}}{3} = \frac{{y + 2}}{1} = \frac{{z - 1}}{{ - 2}}.
Show that {L_1} and {L_2} are skew lines.
Find the Cartesian equation of the plane {\Pi _1}.
(i) Find the value of k.
(ii) Find the point of intersection P of the line {L_3} and the plane {\mathit{\Pi} _2}.
Markscheme
direction vector \overrightarrow {{\rm{AB}}} = \left( \begin{array}{c}1\\3\\ - 5\end{array} \right) or \overrightarrow {{\rm{BA}}} = \left( \begin{array}{c} - 1\\ - 3\\5\end{array} \right) A1
\boldsymbol{r} = \left( \begin{array}{l}1\\0\\4\end{array} \right) + t\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) or \boldsymbol{r} = \left( \begin{array}{c}2\\3\\ - 1\end{array} \right) + t\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) or equivalent A1
Note: Do not award final A1 unless ‘\boldsymbol{r} = {\text{K}}’ (or equivalent) seen.
Allow FT on direction vector for final A1.
[2 marks]
both lines expressed in parametric form:
{L_1}:
x = 1 + t
y = 3t
z = 4 - 5t
{L_2}:
x = 1 + 3s
y = - 2 + s M1A1
z = - 2s + 1
Notes: Award M1 for an attempt to convert {L_2} from Cartesian to parametric form.
Award A1 for correct parametric equations for {L_1} and {L_2}.
Allow M1A1 at this stage if same parameter is used in both lines.
attempt to solve simultaneously for x and y: M1
1 + t = 1 + 3s
3t = - 2 + s
t = - \frac{3}{4},{\text{ }}s = - \frac{1}{4} A1
substituting both values back into z values respectively gives z = \frac{{31}}{4}
and z = \frac{3}{2} so a contradiction R1
therefore {L_1} and {L_1} are skew lines AG
[5 marks]
finding the cross product:
\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) \times \left( \begin{array}{c}3\\1\\ - 2\end{array} \right) (M1)
= – i – 13j – 8k A1
Note: Accept i + 13j + 8k
- 1(0) - 13(1) - 8( - 2) = 3 (M1)
\Rightarrow - x - 13y - 8z = 3 or equivalent A1
[4 marks]
(i) (\cos \theta = )\frac{{\left( \begin{array}{c}k\\1\\ - 1\end{array} \right) \bullet \left( \begin{array}{l}1\\1\\0\end{array} \right)}}{{\sqrt {{k^2} + 1 + 1} \times \sqrt {1 + 1} }} M1
Note: Award M1 for an attempt to use angle between two vectors formula.
\frac{{\sqrt 3 }}{2} = \frac{{k + 1}}{{\sqrt {2({k^2} + 2)} }} A1
obtaining the quadratic equation
4{(k + 1)^2} = 6({k^2} + 2) M1
{k^2} - 4k + 4 = 0
{(k - 2)^2} = 0
k = 2 A1
Note: Award M1A0M1A0 if \cos 60^\circ is used (k = 0{\text{ or }}k = - 4).
(ii) r = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}2\\1\\ - 1\end{array} \right)
substituting into the equation of the plane {\Pi _2}:
3 + 2\lambda + \lambda = 12 M1
\lambda = 3 A1
point P has the coordinates:
(9, 3, –2) A1
Notes: Accept 9i + 3j – 2k and \left( \begin{array}{l}9\\3\\- 2\end{array} \right).
Do not allow FT if two values found for k.
[7 marks]