Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.1.hl.TZ2.12
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 12 Adapted from N/A

Question

Consider the plane Π1, parallel to both lines L1 and L2. Point C lies in the plane Π1.

The line L3 has vector equation \boldsymbol{r} = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}k\\1\\ - 1\end{array} \right).

The plane {\mathit{\Pi} _2} has Cartesian equation x + y = 12.

The angle between the line {L_3} and the plane {\mathit{\Pi} _2} is 60°.

Given the points A(1, 0, 4), B(2, 3, −1) and C(0, 1, − 2) , find the vector equation of the line {L_1} passing through the points A and B.

[2]
a.

The line {L_2} has Cartesian equation \frac{{x - 1}}{3} = \frac{{y + 2}}{1} = \frac{{z - 1}}{{ - 2}}.

Show that {L_1} and {L_2} are skew lines.

[5]
b.

Find the Cartesian equation of the plane {\Pi _1}.

[4]
c.

(i)     Find the value of k.

(ii)     Find the point of intersection P of the line {L_3} and the plane {\mathit{\Pi} _2}.

[7]
d.

Markscheme

direction vector \overrightarrow {{\rm{AB}}}  = \left( \begin{array}{c}1\\3\\ - 5\end{array} \right) or \overrightarrow {{\rm{BA}}}  = \left( \begin{array}{c} - 1\\ - 3\\5\end{array} \right)     A1

\boldsymbol{r} = \left( \begin{array}{l}1\\0\\4\end{array} \right) + t\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) or \boldsymbol{r} = \left( \begin{array}{c}2\\3\\ - 1\end{array} \right) + t\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) or equivalent     A1

 

Note:     Do not award final A1 unless ‘\boldsymbol{r} = {\text{K}}’ (or equivalent) seen.

     Allow FT on direction vector for final A1.

 

[2 marks]

a.

both lines expressed in parametric form:

{L_1}:

x = 1 + t

y = 3t

z = 4 - 5t

{L_2}:

x = 1 + 3s

y =  - 2 + s     M1A1

z =  - 2s + 1

 

Notes:     Award M1 for an attempt to convert {L_2} from Cartesian to parametric form.

     Award A1 for correct parametric equations for {L_1} and {L_2}.

     Allow M1A1 at this stage if same parameter is used in both lines.

 

attempt to solve simultaneously for x and y:     M1

1 + t = 1 + 3s

3t =  - 2 + s

t =  - \frac{3}{4},{\text{ }}s =  - \frac{1}{4}     A1

substituting both values back into z values respectively gives z = \frac{{31}}{4}

and z = \frac{3}{2} so a contradiction     R1

therefore {L_1} and {L_1} are skew lines     AG

[5 marks]

b.

finding the cross product:

\left( \begin{array}{c}1\\3\\ - 5\end{array} \right) \times \left( \begin{array}{c}3\\1\\ - 2\end{array} \right)     (M1)

= – i  – 13j  – 8k     A1

 

Note:     Accept i  + 13j  + 8k

 

- 1(0) - 13(1) - 8( - 2) = 3     (M1)

\Rightarrow  - x - 13y - 8z = 3 or equivalent     A1

[4 marks]

c.

(i)     (\cos \theta  = )\frac{{\left( \begin{array}{c}k\\1\\ - 1\end{array} \right) \bullet \left( \begin{array}{l}1\\1\\0\end{array} \right)}}{{\sqrt {{k^2} + 1 + 1}  \times \sqrt {1 + 1} }}     M1

 

Note:     Award M1 for an attempt to use angle between two vectors formula.

 

\frac{{\sqrt 3 }}{2} = \frac{{k + 1}}{{\sqrt {2({k^2} + 2)} }}     A1

obtaining the quadratic equation

4{(k + 1)^2} = 6({k^2} + 2)     M1

{k^2} - 4k + 4 = 0

{(k - 2)^2} = 0

k = 2     A1

 

Note:     Award M1A0M1A0 if \cos 60^\circ is used (k = 0{\text{ or }}k =  - 4).

 

(ii)     r = \left( \begin{array}{l}3\\0\\1\end{array} \right) + \lambda \left( \begin{array}{c}2\\1\\ - 1\end{array} \right)

substituting into the equation of the plane {\Pi _2}:

3 + 2\lambda  + \lambda  = 12     M1

\lambda  = 3     A1

point P has the coordinates:

(9, 3, –2)   A1

 

Notes:     Accept 9i  + 3j  – 2k and \left( \begin{array}{l}9\\3\\- 2\end{array} \right).

     Do not allow FT if two values found for k.

 

[7 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 4 - Core: Vectors » 4.7 » Intersections of: a line with a plane; two planes; three planes.

View options