Date | May 2017 | Marks available | 6 | Reference code | 17M.2.hl.TZ1.7 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
Find the Cartesian equation of plane Π containing the points \({\text{A}}\left( {6,{\text{ }}2,{\text{ }}1} \right)\) and \({\text{B}}\left( {3,{\text{ }} - 1,{\text{ }}1} \right)\) and perpendicular to the plane \(x + 2y - z - 6 = 0\).
Markscheme
METHOD 1
\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 3} \\ 0 \end{array}} \right)\) (A1)
\(\left( {\begin{array}{*{20}{c}} { - 3} \\ { - 3} \\ 0 \end{array}} \right) \times \left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)\) M1A1
\( = \left( {\begin{array}{*{20}{c}} 3 \\ { - 3} \\ { - 3} \end{array}} \right)\) A1
\(x - y - z = k\) M1
\(k = 3\) equation of plane Π is \(x - y - z = 3\) or equivalent A1
METHOD 2
let plane Π be \(ax + by + cz = d\)
attempt to form one or more simultaneous equations: M1
\(a + 2b - c = 0\) (1) A1
\(6a + 2b + c = d\) (2)
\(3a - b + c = d\) (3) A1
Note: Award second A1 for equations (2) and (3).
attempt to solve M1
EITHER
using GDC gives \(a = \frac{d}{3},{\text{ }}b = - \frac{d}{3},{\text{ }}c = - \frac{d}{3}\) (A1)
equation of plane Π is \(x - y - z = 3\) or equivalent A1
OR
row reduction M1
equation of plane Π is \(x - y - z = 3\) or equivalent A1
[6 marks]