User interface language: English | Español

Date May 2008 Marks available 20 Reference code 08M.1.hl.TZ2.11
Level HL only Paper 1 Time zone TZ2
Command term Calculate, Find, and Show that Question number 11 Adapted from N/A

Question

Consider the points A(1, −1, 4), B (2, − 2, 5) and O(0, 0, 0).

(a)     Calculate the cosine of the angle between \(\overrightarrow {{\text{OA}}} \) and \(\overrightarrow {{\text{AB}}} \).

(b)     Find a vector equation of the line \({L_1}\) which passes through A and B.

The line \({L_2}\) has equation r = 2i + 4j + 7k + t(2i + j + 3k), where \(t \in \mathbb{R}\) .

(c)     Show that the lines \({L_1}\) and \({L_2}\) intersect and find the coordinates of their point of intersection.

(d)     Find the Cartesian equation of the plane which contains both the line \({L_2}\) and the point A.

Markscheme

(a)     Use of \(\cos \theta  = \frac{{\overrightarrow {{\text{OA}}}  \cdot \overrightarrow {{\text{AB}}} }}{{\left| {\overrightarrow {{\text{OA}}} } \right|\left| {\overrightarrow {{\text{AB}}} } \right|}}\)     (M1)

\({\overrightarrow {{\text{AB}}} }\) = ij + k     A1

\(\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt 3 \) and \(\left| {\overrightarrow {{\text{OA}}} } \right| = 3\sqrt 2 \)     A1

\(\overrightarrow {{\text{OA}}}  \cdot \overrightarrow {{\text{AB}}} = 6\)     A1

substituting gives \(\cos \theta = \frac{2}{{\sqrt 6 }}\,\,\,\,\,\left( { = \frac{{\sqrt 6 }}{3}} \right)\,\,\,\,\,\)or equivalent     M1     N1

[5 marks]

 

(b)     \({L_1}\) : r = \(\overrightarrow {{\text{OA}}} + s\overrightarrow {{\text{AB}}} \,\,\,\,\,\) or equivalent     (M1)

\({L_1}\) : r = ij + 4k + s(ij + k)\(\,\,\,\,\,\)or equivalent     A1

Note: Award (M1)A0 for omitting “ r = ” in the final answer.

 

[2 marks]

 

(c)     Equating components and forming equations involving s and t     (M1)

1 + s = 2 + 2t , −1 − s = 4 + t , 4 + s = 7 + 3t

Having two of the above three equations     A1A1

Attempting to solve for s or t     (M1)

Finding either s = −3 or t = −2     A1

Explicitly showing that these values satisfy the third equation     R1

Point of intersection is (−2, 2, 1)     A1     N1

Note: Position vector is not acceptable for final A1.

 

[7 marks]

 

(d)     METHOD 1

\(r = \left( {\begin{array}{*{20}{c}}
  1 \\
  { - 1} \\
  4
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
  2 \\
  1 \\
  3
\end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}
  { - 3} \\
  3 \\
  { - 3}
\end{array}} \right)\)     (A1)

\(x = 1 + 2\lambda - 3\mu {\text{ , }}y = - 1 + \lambda + 3\mu {\text{ and }}z = 4 + 3\lambda - 3\mu \)     M1A1

Elimination of the parameters     M1

\(x + y = 3\lambda {\text{ so }}4(x + y) = 12\lambda {\text{ and }}y + z = 4\lambda + 3{\text{ so }}3(y + z) = 12\lambda + 9\)

\(3(y + z) = 4(x + y) + 9\)     A1

Cartesian equation of plane is 4x + y − 3z = −9 (or equivalent)     A1     N1

[6 marks] 

METHOD 2

EITHER

The point (2, 4, 7) lies on the plane.

The vector joining (2, 4, 7) and (1, −1, 4) and 2i + j + 3k are parallel to the plane. So they are perpendicular to the normal to the plane.

(ij + 4k) − (2i + 4j + 7k) = −i − 5j − 3k     (A1)

\(n = \left| {\begin{array}{*{20}{c}}
  i&j&k \\
  { - 1}&{ - 5}&{ - 3} \\
  2&1&3
\end{array}} \right|\)     M1

= −12i − 3j + 9k\(\,\,\,\,\,\)or equivalent parallel vector     A1

OR

\({L_1}\) and \({L_2}\) intersect at D(−2, 2, 1)

\(n = \left| {\begin{array}{*{20}{c}}
  i&j&k \\
  2&1&{ - 3} \\
  { - 3}&3&{ - 3}
\end{array}} \right|\)
    M1

= −12i − 3j + 9k\(\,\,\,\,\,\)or equivalent parallel vector     A1

THEN

r\( \cdot \)n = (ij + 4k)\( \cdot \)(−12i − 3j + 9k)     M1

= 27     A1

Cartesian equation of plane is 4x + y −3z = −9 (or equivalent)     A1     N1

[6 marks]

Total [20 marks]

Examiners report

Most candidates scored reasonably well on this question. The most common errors were: Using OB rather than AB in (a); omitting the r = in (b); failure to check that the values of the two parameters satisfied the third equation in (c); the use of an incorrect vector in (d). Even when (d) was correctly answered, there was usually little evidence of why a specific vector had been used.

Syllabus sections

Topic 4 - Core: Vectors » 4.4 » Points of intersection.

View options