Date | May 2017 | Marks available | 5 | Reference code | 17M.1.hl.TZ2.11 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Solve | Question number | 11 | Adapted from | N/A |
Question
Let z=1−cos2θ−isin2θ, z∈C, 0⩽θ⩽π.
Solve 2sin(x+60∘)=cos(x+30∘), 0∘⩽x⩽180∘.
Show that sin105∘+cos105∘=1√2.
Find the modulus and argument of z in terms of θ. Express each answer in its simplest form.
Hence find the cube roots of z in modulus-argument form.
Markscheme
2sin(x+60∘)=cos(x+30∘)
2(sinxcos60∘+cosxsin60∘)=cosxcos30∘−sinxsin30∘ (M1)(A1)
2sinx×12+2cosx×√32=cosx×√32−sinx×12 A1
⇒32sinx=−√32cosx
⇒tanx=−1√3 M1
⇒x=150∘ A1
[5 marks]
EITHER
choosing two appropriate angles, for example 60° and 45° M1
sin105∘=sin60∘cos45∘+cos60∘sin45∘ and
cos105∘=cos60∘cos45∘−sin60∘sin45∘ (A1)
sin105∘+cos105∘=√32×1√2+12×1√2+12×1√2−√32×1√2 A1
=1√2 AG
OR
attempt to square the expression M1
(sin105∘+cos105∘)2=sin2105∘+2sin105∘cos105∘+cos2105∘
(sin105∘+cos105∘)2=1+sin210∘ A1
=12 A1
sin105∘+cos105∘=1√2 AG
[3 marks]
EITHER
z=(1−cos2θ)−isin2θ
|z|=√(1−cos2θ)2+(sin2θ)2 M1
|z|=√1−2cos2θ+cos22θ+sin22θ A1
=√2√(1−cos2θ) A1
=√2(2sin2θ)
=2sinθ A1
let arg(z)=α
tanα=−sin2θ1−cos2θ M1
=−2sinθcosθ2sin2θ (A1)
=−cotθ A1
arg(z)=α=−arctan(tan(π2−θ)) A1
=θ−π2 A1
OR
z=(1−cos2θ)−isin2θ
=2sin2θ−2isinθcosθ M1A1
=2sinθ(sinθ−icosθ) (A1)
=−2isinθ(cosθ+isinθ) M1A1
=2sinθ(cos(θ−π2)+isin(θ−π2)) M1A1
|z|=2sinθ A1
arg(z)=θ−π2 A1
[9 marks]
attempt to apply De Moivre’s theorem M1
(1−cos2θ−isin2θ)13=213(sinθ)13[cos(θ−π2+2nπ3)+isin(θ−π2+2nπ3)] A1A1A1
Note: A1 for modulus, A1 for dividing argument of z by 3 and A1 for 2nπ.
Hence cube roots are the above expression when n=−1, 0, 1. Equivalent forms are acceptable. A1
[5 marks]