Date | May 2017 | Marks available | 5 | Reference code | 17M.1.hl.TZ2.11 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Solve | Question number | 11 | Adapted from | N/A |
Question
Let \(z = 1 - \cos 2\theta - {\text{i}}\sin 2\theta ,{\text{ }}z \in \mathbb{C},{\text{ }}0 \leqslant \theta \leqslant \pi \).
Solve \(2\sin (x + 60^\circ ) = \cos (x + 30^\circ ),{\text{ }}0^\circ \leqslant x \leqslant 180^\circ \).
Show that \(\sin 105^\circ + \cos 105^\circ = \frac{1}{{\sqrt 2 }}\).
Find the modulus and argument of \(z\) in terms of \(\theta \). Express each answer in its simplest form.
Hence find the cube roots of \(z\) in modulus-argument form.
Markscheme
\(2\sin (x + 60^\circ ) = \cos (x + 30^\circ )\)
\(2(\sin x\cos 60^\circ + \cos x\sin 60^\circ ) = \cos x\cos 30^\circ - \sin x\sin 30^\circ \) (M1)(A1)
\(2\sin x \times \frac{1}{2} + 2\cos x \times \frac{{\sqrt 3 }}{2} = \cos x \times \frac{{\sqrt 3 }}{2} - \sin x \times \frac{1}{2}\) A1
\( \Rightarrow \frac{3}{2}\sin x = - \frac{{\sqrt 3 }}{2}\cos x\)
\( \Rightarrow \tan x = - \frac{1}{{\sqrt 3 }}\) M1
\( \Rightarrow x = 150^\circ \) A1
[5 marks]
EITHER
choosing two appropriate angles, for example 60° and 45° M1
\(\sin 105^\circ = \sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ \) and
\(\cos 105^\circ = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ \) (A1)
\(\sin 105^\circ + \cos 105^\circ = \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }} + \frac{1}{2} \times \frac{1}{{\sqrt 2 }} + \frac{1}{2} \times \frac{1}{{\sqrt 2 }} - \frac{{\sqrt 3 }}{2} \times \frac{1}{{\sqrt 2 }}\) A1
\( = \frac{1}{{\sqrt 2 }}\) AG
OR
attempt to square the expression M1
\({(\sin 105^\circ + \cos 105^\circ )^2} = {\sin ^2}105^\circ + 2\sin 105^\circ \cos 105^\circ + {\cos ^2}105^\circ \)
\({(\sin 105^\circ + \cos 105^\circ )^2} = 1 + \sin 210^\circ \) A1
\( = \frac{1}{2}\) A1
\(\sin 105^\circ + \cos 105^\circ = \frac{1}{{\sqrt 2 }}\) AG
[3 marks]
EITHER
\(z = (1 - \cos 2\theta ) - {\text{i}}\sin 2\theta \)
\(\left| z \right| = \sqrt {{{(1 - \cos 2\theta )}^2} + {{(\sin 2\theta )}^2}} \) M1
\(\left| z \right| = \sqrt {1 - 2\cos 2\theta + {{\cos }^2}2\theta + {{\sin }^2}2\theta } \) A1
\( = \sqrt 2 \sqrt {(1 - \cos 2\theta )} \) A1
\( = \sqrt {2(2{{\sin }^2}\theta )} \)
\( = 2\sin \theta \) A1
let \(\arg (z) = \alpha \)
\(\tan \alpha = - \frac{{\sin 2\theta }}{{1 - \cos 2\theta }}\) M1
\( = \frac{{ - 2\sin \theta \cos \theta }}{{2{{\sin }^2}\theta }}\) (A1)
\( = - \cot \theta \) A1
\(\arg (z) = \alpha = - \arctan \left( {\tan \left( {\frac{\pi }{2} - \theta } \right)} \right)\) A1
\( = \theta - \frac{\pi }{2}\) A1
OR
\(z = (1 - \cos 2\theta ) - {\text{i}}\sin 2\theta \)
\( = 2{\sin ^2}\theta - 2{\text{i}}\sin \theta \cos \theta \) M1A1
\( = 2\sin \theta (\sin \theta - {\text{i}}\cos \theta )\) (A1)
\( = - 2{\text{i}}\sin \theta (\cos \theta + {\text{i}}\sin \theta )\) M1A1
\( = 2\sin \theta \left( {\cos \left( {\theta - \frac{\pi }{2}} \right) + {\text{i}}\sin \left( {\theta - \frac{\pi }{2}} \right)} \right)\) M1A1
\(\left| z \right| = 2\sin \theta \) A1
\(\arg (z) = \theta - \frac{\pi }{2}\) A1
[9 marks]
attempt to apply De Moivre’s theorem M1
\({(1 - \cos 2\theta - {\text{i}}\sin 2\theta )^{\frac{1}{3}}} = {2^{\frac{1}{3}}}{(\sin \theta )^{\frac{1}{3}}}\left[ {\cos \left( {\frac{{\theta - \frac{\pi }{2} + 2n\pi }}{3}} \right) + {\text{i}}\sin \left( {\frac{{\theta - \frac{\pi }{2} + 2n\pi }}{3}} \right)} \right]\) A1A1A1
Note: A1 for modulus, A1 for dividing argument of \(z\) by 3 and A1 for \(2n\pi \).
Hence cube roots are the above expression when \(n = - 1,{\text{ }}0,{\text{ }}1\). Equivalent forms are acceptable. A1
[5 marks]