User interface language: English | Español

Date None Specimen Marks available 7 Reference code SPNone.2.hl.TZ0.3
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 3 Adapted from N/A

Question

In the acute angled triangle ABC, the points E, F lie on [AC], [AB] respectively such that [BE] is perpendicular to [AC] and [CF] is perpendicular to [AB]. The lines (BE) and (CF) meet at H. The line (BE) meets the circumcircle of the triangle ABC at P. This is shown in the following diagram.


(i)     Show that CEFB is a cyclic quadrilateral.

(ii)     Show that \({\rm{HE}} = {\rm{EP}}\) .

[7]
a.

The line (AH) meets [BC] at D.

(i)     By considering cyclic quadrilaterals show that \({\rm{C}}\widehat {\rm{A}}{\rm{D}} = {\rm{E}}\widehat {\rm{F}}{\rm{H}} = {\rm{E}}\widehat {\rm{B}}{\rm{C}}\) .

(ii)     Hence show that [AD] is perpendicular to [BC].

[8]
b.

Markscheme

(i)     CEFB is cyclic because \({\rm{B}}\widehat {\rm{E}}{\rm{C}} = {\rm{B}}\widehat {\rm{F}}{\rm{C}} = {90^ \circ }\)     R1

([BC] is actually the diameter)

 

(ii)     consider the triangles CHE, CPE     M1

[CE] is common     A1

\({\rm{H}}\widehat {\rm{E}}{\rm{C}} = {\rm{P}}\widehat {\rm{E}}{\rm{C}} = {90^ \circ }\)     A1

\({\rm{P}}\widehat {\rm{C}}{\rm{E}} = {\rm{P}}\widehat {\rm{B}}{\rm{A}}\) (subtended by chord [AP])     A1

\({\rm{P}}\widehat {\rm{B}}{\rm{A}} = {\rm{F}}\widehat {\rm{C}}{\rm{E}}\) (subtended by chord [FE])     A1

triangles CHE and CPE are congruent     A1

therefore \({\rm{HE}} = {\rm{EP}}\)     AG

 

[7 marks]

a.

(i)     EAFH is a cyclic quad because \({\rm{A}}\widehat {\rm{E}}{\rm{B}} = {\rm{C}}\widehat {\rm{F}}{\rm{A}} = {90^ \circ }\)     M1

\({\rm{C}}\widehat {\rm{A}}{\rm{D}} = {\rm{E}}\widehat {\rm{F}}{\rm{H}}\) subtended by the chord [HE]     R1AG

CEFB is a cyclic quad from part (a)     M1

\({\rm{E}}\widehat {\rm{F}}{\rm{H}} = {\rm{E}}\widehat {\rm{B}}{\rm{C}}\) subtended by the chord [EC]     R1AG

 

(ii)     \({\rm{A}}\widehat {\rm{D}}{\rm{C}} = {180^ \circ } - {\rm{C}}\widehat {\rm{A}}{\rm{D}} - {\rm{D}}\widehat {\rm{C}}{\rm{A}}\)     M1

\( = {180^ \circ } - {\rm{C}}\widehat {\rm{A}}{\rm{D}} - (90 - {\rm{E}}\widehat {\rm{B}}{\rm{C)}}\)     A1

\( = {90^ \circ } - {\rm{C}}\widehat {\rm{A}}{\rm{D}} + {\rm{E}}\widehat {\rm{B}}{\rm{C}}\)     A1

\( = {90^ \circ }\)     A1

hence [AD] is perpendicular to [BC]     AG

 

[8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Geometry » 2.3 » Circle geometry.

View options