User interface language: English | Español

Date May 2010 Marks available 2 Reference code 10M.1.hl.TZ0.6
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 6 Adapted from N/A

Question

 

The figure shows a circle C1 with centre O and diameter [PQ] and a circle C2 which intersects (PQ) at the points R and S. T is one point of intersection of the two circles and (OT) is a tangent to C2 .

Show that \(\frac{{{\rm{OR}}}}{{{\rm{OT}}}} = \frac{{{\rm{OT}}}}{{{\rm{OS}}}}\) .

[2]
a.

(i)     Show that \({\rm{PR}} - {\rm{RQ}} = 2{\rm{OR}}\) .

(ii)     Show that \(\frac{{{\rm{PR}} - {\rm{RQ}}}}{{{\rm{PR}} + {\rm{RQ}}}} = \frac{{{\rm{PS}} - {\rm{SQ}}}}{{{\rm{PS}} + {\rm{SQ}}}}\) .

[6]
b.

Markscheme

by the tangent – secant theorem,     M1

\({\rm{O}}{{\rm{T}}^2} = {\rm{OR}} \bullet {\rm{OS}}\)     A1

so that \(\frac{{{\rm{OR}}}}{{{\rm{OT}}}} = \frac{{{\rm{OT}}}}{{{\rm{OS}}}}\)     AG

[2 marks]

a.

(i)     \({\rm{PR}} - {\rm{RQ}} = {\rm{PO}} + {\rm{OR}} - ({\rm{OQ}} - {\rm{OR}})\)     A1

\( = 2{\rm{OR}}\)    AG

 

(ii)     attempt to continue the process set up in (b)(i)     (M1)

\({\rm{PR + RQ}} = {\rm{PO}} + {\rm{OR + OQ}} - {\rm{OR}} = 2{\rm{OT}}\)     A1

\({\rm{PS}} - {\rm{SQ}} = {\rm{PQ}} + {\rm{QS}} - {\rm{SQ}} = 2{\rm{OT}}\)     A1

\({\rm{PS + SQ}} = {\rm{PO}} + {\rm{OS}} - {\rm{OQ}} = 2{\rm{OS}}\)     A1

it now follows that

\(\frac{{{\rm{PR}} - {\rm{RQ}}}}{{{\rm{PR}} + {\rm{RQ}}}} = \frac{{{\rm{OR}}}}{{{\rm{OT}}}}\) and \(\frac{{{\rm{PS}} - {\rm{SQ}}}}{{{\rm{PS}} + {\rm{SQ}}}} = \frac{{{\rm{OT}}}}{{{\rm{OS}}}}\) so using the result in part (a)     R1

\(\frac{{{\rm{PR}} - {\rm{RQ}}}}{{{\rm{PR}} + {\rm{RQ}}}} = \frac{{{\rm{PS}} - {\rm{SQ}}}}{{{\rm{PS}} + {\rm{SQ}}}}\)     AG

 

 

[6 marks]

b.

Examiners report

Most candidates solved (a) correctly although some used similar triangles instead of the more obvious tangent-secant theorem.

a.

Although (b) and then (c) were fairly well signposted, many candidates were unable to cope with the required algebra.

b.

Syllabus sections

Topic 2 - Geometry » 2.3 » Circle geometry.

View options