Processing math: 100%

User interface language: English | Español

Date May 2014 Marks available 5 Reference code 14M.1.hl.TZ0.9
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 9 Adapted from N/A

Question

ABCDEF is a hexagon. A circle lies inside the hexagon and touches each of the six sides.

Show that AB+CD+EF=BC+DE+FA.

Markscheme

     A1

the lengths of the two tangents from a point to a circle are equal     (R1)

so that

AG=LA

GB=BH

CI=HC

ID=DJ

EK=JE

KF= FL     A1

adding,

(AG+GB)+(CI+ID)+(EK+KF)=(BH+HC)+(DJ+JE)+(FL+LA)     M1A1

AB+CD+EF=BC+DE+FA     AG

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2 - Geometry » 2.3 » Circle geometry.

View options