User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.1.sl.TZ2.7
Level SL only Paper 1 Time zone TZ2
Command term Determine Question number 7 Adapted from N/A

Question

The diagram shows a wheelchair ramp, \({\text{A}}\), designed to descend from a height of \(80{\text{ cm}}\).


Use the diagram above to calculate the gradient of the ramp.

[1]
a.

The gradient for a safe descending wheelchair ramp is \( - \frac{1}{{12}}\).

Using your answer to part (a), comment on why wheelchair ramp \({\text{A}}\) is not safe.

[1]
b.

The equation of a second wheelchair ramp, B, is \(2x + 24y - 1920 = 0\).



(i)     Determine whether wheelchair ramp \({\text{B}}\) is safe or not. Justify your answer.

(ii)     Find the horizontal distance of wheelchair ramp \({\text{B}}\).

[4]
c.

Markscheme

\( - \frac{{80}}{{940}}{\text{ }}\left( {-0.0851, -0.085106 \ldots , -\frac{4}{{47}}} \right)\)     (A1)     (C1)

[1 mark]

a.

\(-0.0851{\text{ }} (-0.085106 \ldots ) <  - \frac{1}{{12}}(-0.083333 \ldots )\)     (A1)(ft)     (C1)

 

Notes: Accept “less than” in place of inequality.

     Award (A0) if incorrect inequality seen.

     Follow through from part (a).

 

[1 mark]

b.

(i)     ramp \({\text{B}}\) is safe     (A1)

the gradient of ramp \({\text{B}}\) is \( - \frac{1}{{12}}\)     (R1)

 

Notes: Award (R1) for “the gradient of ramp \({\text{B}}\) is \( - \frac{1}{{12}}\)” seen.

     Do not award (A1)(R0).

 

(ii)     \(2x = 1920\)     (M1)

 

Note: Accept alternative methods.

 

\(960 {\text{ (cm)}}\)     (A1)     (C4)

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 5 - Geometry and trigonometry » 5.1 » Equation of a line in two dimensions: the forms \(y = mx + c\) and \(ax + by + d = 0\) .
Show 54 related questions

View options