DP Mathematics SL Questionbank
Algebraic and geometric approaches to \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = b - a\) .
Path: |
Description
[N/A]Directly related questions
- 18M.2.sl.TZ2.8d: Hence or otherwise find the shortest distance from R to the line through P and Q.
- 18M.2.sl.TZ2.8c: Find the area of triangle PQR.
- 18M.2.sl.TZ2.8b: Find the angle between PQ and PR.
- 18M.2.sl.TZ2.8a.ii: Find \(\left| {\mathop {{\text{PQ}}}\limits^ \to } \right|\).
- 18M.2.sl.TZ2.8a.i: Find \(\mathop {{\text{PQ}}}\limits^ \to \).
- 18M.1.sl.TZ1.9d: Point D is also on L and has coordinates (8, 4, −9). Find the area of triangle OCD.
- 18M.1.sl.TZ1.9c.ii: Write down the value of angle OBA.
- 18M.1.sl.TZ1.9c.i: Find \(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \).
- 18M.1.sl.TZ1.9b.ii: Point C (k , 12 , −k) is on L. Show that k = 14.
- 18M.1.sl.TZ1.9b.i: Find a vector equation for L.
- 18M.1.sl.TZ1.9a: Show...
- 18M.1.sl.TZ1.6: Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.This is...
- 10N.1.sl.TZ0.8a(i), (ii) and (iii): (i) Show that...
- 10N.1.sl.TZ0.8b(i) and (ii): The line (AC) has equation \({\boldsymbol{r}} = {\boldsymbol{u}} + s{\boldsymbol{v}}\) . (i) ...
- 10N.1.sl.TZ0.8d: The lines (AC) and (BD) intersect at the point \({\text{P}}(3{\text{, }}k)\) . Hence find the...
- 10N.1.sl.TZ0.8c: The lines (AC) and (BD) intersect at the point \({\text{P}}(3{\text{, }}k)\) . Show that...
- 10M.1.sl.TZ1.10b: A third line \({L_3}\) is perpendicular to \({L_1}\) and is represented by...
- 10M.1.sl.TZ2.2b: Find a unit vector in the direction of \(\overrightarrow {{\rm{AB}}} \) .
- 10M.1.sl.TZ2.2c: Show that \(\overrightarrow {{\rm{AB}}} \) is perpendicular to \(\overrightarrow {{\rm{AC}}} \) .
- 10M.1.sl.TZ1.10a: Write down a vector equation for \({L_2}\) in the form...
- 10M.1.sl.TZ1.10c: The lines \({L_1}\) and \({L_3}\) intersect at the point A. Find the coordinates of A.
- 10M.1.sl.TZ1.10d(i) and (ii): The lines \({L_2}\)and \({L_3}\)intersect at point C where...
- 10M.1.sl.TZ2.2a: Find \(\overrightarrow {{\rm{BC}}} \) .
- 10M.2.sl.TZ2.9a(i) and (ii): (i) Write down the coordinates of A. (ii) Find the speed of the airplane in...
- 10M.2.sl.TZ2.9b(i) and (ii): After seven seconds the airplane passes through a point B. (i) Find the coordinates of...
- 10M.2.sl.TZ2.9c: Airplane 2 passes through a point C. Its position q seconds after it passes through C is given by...
- 11N.1.sl.TZ0.8a(i) and (ii): (i) Find \(\overrightarrow {{\rm{PQ}}} \) . (ii) Hence write down a vector equation for...
- 11N.1.sl.TZ0.8b(i) and (ii): (i) Find the value of p . (ii) Given that \({L_2}\) passes through...
- 11N.1.sl.TZ0.8c: The lines \({L_1}\) and \({L_2}\) intersect at the point A. Find the x-coordinate of A.
- 11M.1.sl.TZ1.9a(i) and (ii): (i) Write down \(\overrightarrow {{\rm{BA}}} \) . (ii) Find...
- 11M.1.sl.TZ1.9b(i) and (ii): (i) Find \(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}}\) . (ii) Hence, find...
- 11M.1.sl.TZ1.9c(i) and (ii): The point D is such that...
- 11M.1.sl.TZ2.3a: Find \(\overrightarrow {{\rm{BC}}} \) .
- 11M.1.sl.TZ2.3b: Show...
- 11M.1.sl.TZ2.3c: Show that vectors \(\overrightarrow {{\rm{BD}}} \) and \(\overrightarrow {{\rm{AC}}} \) are...
- 11M.2.sl.TZ2.8d: The lines \({L_1}\) and \({L_2}\) intersect at point C. Find the coordinates of C.
- 11M.2.sl.TZ2.8a: Find \(\overrightarrow {{\rm{AB}}} \) .
- 11M.2.sl.TZ2.8b: Find an equation for \({L_1}\) in the form...
- 11M.2.sl.TZ2.8c: Find the angle between \({L_1}\) and \({L_2}\) .
- 13M.1.sl.TZ1.8a.i: Find \(\overrightarrow {{\rm{AB}}} \) .
- 13M.2.sl.TZ2.8a: Find (i) \(\overrightarrow {{\rm{AB}}} \) ; (ii) \(\overrightarrow {{\rm{AC}}} \) .