DP Mathematics SL Questionbank
Algebraic and geometric approaches to position vectors \(\overrightarrow {OA} = a\) .
Path: |
Description
[N/A]Directly related questions
- 18M.2.sl.TZ2.8d: Hence or otherwise find the shortest distance from R to the line through P and Q.
- 18M.2.sl.TZ2.8c: Find the area of triangle PQR.
- 18M.2.sl.TZ2.8b: Find the angle between PQ and PR.
- 18M.2.sl.TZ2.8a.ii: Find \(\left| {\mathop {{\text{PQ}}}\limits^ \to } \right|\).
- 18M.2.sl.TZ2.8a.i: Find \(\mathop {{\text{PQ}}}\limits^ \to \).
- 18M.1.sl.TZ1.9d: Point D is also on L and has coordinates (8, 4, −9). Find the area of triangle OCD.
- 18M.1.sl.TZ1.9c.ii: Write down the value of angle OBA.
- 18M.1.sl.TZ1.9c.i: Find \(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \).
- 18M.1.sl.TZ1.9b.ii: Point C (k , 12 , −k) is on L. Show that k = 14.
- 18M.1.sl.TZ1.9b.i: Find a vector equation for L.
- 18M.1.sl.TZ1.9a: Show...
- 18M.1.sl.TZ1.6: Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.This is...
- 12N.1.sl.TZ0.9a: Show that...
- 12N.1.sl.TZ0.9b: Let C and D be points such that ABCD is a rectangle. Given that...
- 12N.1.sl.TZ0.9c: Let C and D be points such that ABCD is a rectangle. Find the coordinates of point C.
- 12N.1.sl.TZ0.9d: Let C and D be points such that ABCD is a rectangle. Find the area of rectangle ABCD.
- 12M.2.sl.TZ2.8a(i), (ii) and (iii): (i) Find \(\overrightarrow {{\rm{OB}}} \) . (ii) Find \(\overrightarrow {{\rm{OF}}} \)...
- 12M.2.sl.TZ2.8b(i) and (ii): Write down a vector equation for (i) the line OF; (ii) the line AG.
- 12M.2.sl.TZ2.8c: Find the obtuse angle between the lines OF and AG.
- 11M.1.sl.TZ1.2a: Write down a vector equation for L in the form...
- 11M.1.sl.TZ1.2b(i) and (ii): Find (i) \(\overrightarrow {{\rm{OP}}} \) ; (ii) \(|\overrightarrow {{\rm{OP}}} |\) .
- 15M.1.sl.TZ1.8e: Hence or otherwise, find the area of triangle \(OAB\).