Date | November 2015 | Marks available | 5 | Reference code | 15N.1.sl.TZ0.9 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 9 | Adapted from | N/A |
Question
A line \({L_1}\) passes through the points \({\text{A}}(0,{\text{ }} - 3,{\text{ }}1)\) and \({\text{B}}( - 2,{\text{ }}5,{\text{ }}3)\).
(i) Show that \(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} { - 2} \\ 8 \\ 2 \end{array}} \right)\).
(ii) Write down a vector equation for \({L_1}\).
A line \({L_2}\) has equation \({\mathbf{r}} = \left( {\begin{array}{*{20}{c}} { - 1} \\ 7 \\ { - 4} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ { - 1} \end{array}} \right)\). The lines \({L_1}\) and \({L_2}\) intersect at a point \(C\).
Show that the coordinates of \(C\) are \(( - 1,{\text{ }}1,{\text{ }}2)\).
A point \(D\) lies on line \({L_2}\) so that \(\left| {\overrightarrow {{\text{CD}}} } \right| = \sqrt {18} \) and \(\overrightarrow {{\text{CA}}} \bullet \overrightarrow {{\text{CD}}} = - 9\). Find \({\rm{A\hat CD}}\).
Markscheme
(i) correct approach A1
eg\(\;\;\;{\text{OB}} - {\text{OA, }}\left( {\begin{array}{*{20}{c}} { - 2} \\ 5 \\ 3 \end{array}} \right) - \left( {\begin{array}{*{20}{c}} 0 \\ { - 3} \\ 1 \end{array}} \right),{\text{ B}} - {\text{A}}\)
\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} { - 2} \\ 8 \\ 2 \end{array}} \right)\) AG N0
(ii) any correct equation in the form \(r = a + \) t\(b\) (accept any parameter for \(t\))
where \(a\) is \(\left( {\begin{array}{*{20}{c}} 0 \\ { - 3} \\ 1 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { - 2} \\ 5 \\ 3 \end{array}} \right)\), and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} { - 2} \\ 8 \\ 2 \end{array}} \right)\) A2 N2
eg\(r\) = \left( {\begin{array}{*{20}{c}} 0 \\ { - 3} \\ 1 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { - 2} \\ 8 \\ 2 \end{array}} \right),\(r\) = \left( {\begin{array}{*{20}{c}} { - 2 - 2s} \\ {5 + 8s} \\ {3 + 2s} \end{array}} \right),\(r = 2i + 5j + 3k + \) t\(( - 2i + 8j + 2k)\)
Note: Award A1 for the form \(a\) + t\(b\), A1 for the form \(L = \(a\) + t\(b\),
A0 for the form \(r\) = \(b\) + t\(a\).
[3 marks]
valid approach (M1)
eg\(\;\;\;\)equating lines, \({L_1} = {L_2}\)
one correct equation in one variable A1
eg\(\;\;\; - 2t = - 1,{\text{ }} - 2 - 2t = - 1\)
valid attempt to solve (M1)
eg\(\;\;\;2t = 1,{\text{ }} - 2t = 1\)
one correct parameter A1
eg\(\;\;\;t = \frac{1}{2},{\text{ }}t = - \frac{1}{2},{\text{ }}s = - 6\)
correct substitution of either parameter A1
eg\(\;\;\;r = \left( {\begin{array}{*{20}{c}} 0 \\ { - 3} \\ 1 \end{array}} \right) + \frac{1}{2}\left( {\begin{array}{*{20}{c}} { - 2} \\ 8 \\ 2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { - 2} \\ 5 \\ 3 \end{array}} \right) - \frac{1}{2}\left( {\begin{array}{*{20}{c}} { - 2} \\ 8 \\ 2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { - 1} \\ 7 \\ { - 4} \end{array}} \right) - 6\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ { - 1} \end{array}} \right)\)
the coordinates of \(C\) are \(( - 1,{\text{ }}1,{\text{ }}2)\), or position vector of \(C\) is \(\left( {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 2 \end{array}} \right)\) AG N0
Note: If candidate uses the same parameter in both vector equations and working shown, award M1A1M1A0A0.
[5 marks]
valid approach (M1)
eg\(\;\;\;\)attempt to find \(\overrightarrow {{\text{CA}}} ,{\text{ }}\cos {\rm{A\hat CD}} = \frac{{\overrightarrow {{\text{CA}}} \bullet \overrightarrow {{\text{CD}}} }}{{\left| {\overrightarrow {{\text{CA}}} } \right|\left| {\overrightarrow {{\text{CD}}} } \right|}},{\rm{ A\hat CD}}\) formed by \(\overrightarrow {{\text{CA}}} \) and \(\overrightarrow {{\text{CD}}} \)
\(\overrightarrow {{\text{CA}}} = \left( {\begin{array}{*{20}{c}} 1 \\ { - 4} \\ { - 1} \end{array}} \right)\) (A1)
Notes: Exceptions to FT:
1 if candidate indicates that they are finding \(\overrightarrow {{\text{CA}}} \), but makes an error, award M1A0;
2 if candidate finds an incorrect vector (including \(\overrightarrow {{\text{AC}}} \)), award M0A0.
In both cases, if working shown, full FT may be awarded for subsequent correct FT work.
Award the final (A1) for simplification of their value for \({\rm{A\hat CD}}\).
Award the final A2 for finding their arc cos. If their value of cos does not allow them to find an angle, they cannot be awarded this A2.
finding \(\left| {\overrightarrow {{\text{CA}}} } \right|\) (may be seen in cosine formula) A1
eg\(\;\;\;\sqrt {{1^2} + {{( - 4)}^2} + {{( - 1)}^2}} ,{\text{ }}\sqrt {18} \)
correct substitution into cosine formula (A1)
eg\(\;\;\;\frac{{ - 9}}{{\sqrt {18} \sqrt {18} }}\)
finding \(\cos {\rm{A\hat CD}} - \frac{1}{2}\) (A1)
\({\rm{A\hat CD}} = \frac{{2\pi }}{3}\;\;\;(120^\circ )\) A2 N2
Notes: Award A1 if additional answers are given.
Award A1 for answer \(\frac{\pi }{3}{\rm{ (60^\circ )}}\).
[7 marks]
Total [15 marks]