User interface language: English | Español

Date November 2013 Marks available 6 Reference code 13N.2.sl.TZ0.9
Level SL only Paper 2 Time zone TZ0
Command term Find Question number 9 Adapted from N/A

Question

Consider the lines \({L_1}\) and \({L_2}\) with equations \({L_1}\) : \(\boldsymbol{r}=\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ - 1\end{array} \right)\) and \({L_2}\) : \(\boldsymbol{r} = \left( \begin{array}{c}1\\1\\ - 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\).

The lines intersect at point \(\rm{P}\).

Find the coordinates of \({\text{P}}\).

[6]
a.

Show that the lines are perpendicular.

[5]
b.

The point \({\text{Q}}(7, 5, 3)\) lies on \({L_1}\). The point \({\text{R}}\) is the reflection of \({\text{Q}}\) in the line \({L_2}\).

Find the coordinates of \({\text{R}}\).

[6]
c.

Markscheme

appropriate approach     (M1)

eg     \(\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ - 1\end{array} \right) = \left( \begin{array}{c}1\\1\\ - 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\), \({L_1} = {L_2}\)

any two correct equations     A1A1

eg     \(11 + 4s = 1 + 2t,{\text{ }}8 + 3s = 1 + t,{\text{ }}2 - s =  - 7 + 11t\)

attempt to solve system of equations     (M1)

eg     \(10 + 4s = 2(7 + 3s), \left\{ {\begin{array}{*{20}{c}} {4s - 2t =  - 10} \\  {3s - t =  - 7} \end{array}} \right.\)

one correct parameter     A1

eg     \(s =  - 2,{\text{ }}t = 1\)

\({\text{P}}(3, 2, 4)\)   (accept position vector)     A1     N3

[6 marks]

 

a.

choosing correct direction vectors for \({L_1}\) and \({L_2}\)     (A1)(A1)

eg     \(\left( {\begin{array}{*{20}{c}}   4 \\    3 \\    { - 1} \end{array}} \right),\left( {\begin{array}{*{20}{c}}   2 \\   1 \\   {11} \end{array}} \right)\) (or any scalar multiple)

evidence of scalar product (with any vectors)     (M1)

eg     \(a \cdot b\), \(\left( \begin{array}{c}4\\3\\ - 1\end{array} \right) \bullet \left( \begin{array}{c}2\\1\\11\end{array} \right)\)

correct substitution     A1

eg     \(4(2) + 3(1) + ( - 1)(11),{\text{ }}8 + 3 - 11\)

calculating \(a \cdot b = 0\)     A1

 

Note: Do not award the final A1 without evidence of calculation.

 

vectors are perpendicular     AG     N0

[5 marks]

b.

Note: Candidates may take different approaches, which do not necessarily involve vectors.

In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.

 

METHOD 1

attempt to find \(\overrightarrow {{\text{QP}}} \) or \(\overrightarrow {{\text{PQ}}} \)     (M1)

correct working (may be seen on diagram)     A1

eg     \(\overrightarrow {{\text{QP}}} \) = \(\left( \begin{array}{c} - 4\\ - 3\\1\end{array} \right)\), \(\overrightarrow {{\text{PQ}}} \) = \(\left( \begin{array}{c}7\\5\\3\end{array} \right) - \left( \begin{array}{c}3\\2\\4\end{array} \right)\)

recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere)     (R1)

eg     on diagram

\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere)     (R1)

eg     \(\overrightarrow {{\text{QP}}}  = \overrightarrow {{\text{PR}}} \), marked on diagram

correct working     (A1)

eg     \(\left( \begin{array}{c}3\\2\\4\end{array} \right) - \left( \begin{array}{c}7\\5\\3\end{array} \right) = \left( \begin{array}{c}x\\y\\z\end{array} \right) - \left( \begin{array}{c}3\\2\\4\end{array} \right),\left( \begin{array}{c} - 4\\ - 3\\1\end{array} \right) + \left( \begin{array}{c}3\\2\\4\end{array} \right)\)

\({\text{R}}(–1, –1, 5)\) (accept position vector)     A1     N3

METHOD 2 

recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere)     (R1)

eg     on diagram

\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere)     (R1)

eg     \({\text{P}}\) midpoint of \({\text{QR}}\), marked on diagram

valid approach to find one coordinate of mid-point     (M1)

eg     \({x_p} = \frac{{{x_Q} + {x_R}}}{2},{\text{ }}2{y_p} = {y_Q} + {y_R},{\text{ }}\frac{1}{2}\left( {{z_Q} + {z_R}} \right)\)

one correct substitution     A1

eg     \({x_R} = 3 + (3 - 7),{\text{ }}2 = \frac{{5 + {y_R}}}{2},{\text{ }}4 = \frac{1}{2}(z + 3)\)

correct working for one coordinate     (A1)

eg     \({x_R} = 3 - 4,{\text{ }}4 - 5 = {y_R},{\text{ }}8 = (z + 3)\)

\({\text{R}} (-1, -1, 5)\) (accept position vector)     A1     N3

[6 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4 - Vectors » 4.4 » Finding the point of intersection of two lines.
Show 28 related questions

View options