Date | November 2013 | Marks available | 6 | Reference code | 13N.2.sl.TZ0.9 |
Level | SL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
Consider the lines L1 and L2 with equations L1 : \boldsymbol{r}=\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ - 1\end{array} \right) and {L_2} : \boldsymbol{r} = \left( \begin{array}{c}1\\1\\ - 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right).
The lines intersect at point \rm{P}.
Find the coordinates of {\text{P}}.
Show that the lines are perpendicular.
The point {\text{Q}}(7, 5, 3) lies on {L_1}. The point {\text{R}} is the reflection of {\text{Q}} in the line {L_2}.
Find the coordinates of {\text{R}}.
Markscheme
appropriate approach (M1)
eg \left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ - 1\end{array} \right) = \left( \begin{array}{c}1\\1\\ - 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right), {L_1} = {L_2}
any two correct equations A1A1
eg 11 + 4s = 1 + 2t,{\text{ }}8 + 3s = 1 + t,{\text{ }}2 - s = - 7 + 11t
attempt to solve system of equations (M1)
eg 10 + 4s = 2(7 + 3s), \left\{ {\begin{array}{*{20}{c}} {4s - 2t = - 10} \\ {3s - t = - 7} \end{array}} \right.
one correct parameter A1
eg s = - 2,{\text{ }}t = 1
{\text{P}}(3, 2, 4) (accept position vector) A1 N3
[6 marks]
choosing correct direction vectors for {L_1} and {L_2} (A1)(A1)
eg \left( {\begin{array}{*{20}{c}} 4 \\ 3 \\ { - 1} \end{array}} \right),\left( {\begin{array}{*{20}{c}} 2 \\ 1 \\ {11} \end{array}} \right) (or any scalar multiple)
evidence of scalar product (with any vectors) (M1)
eg a \cdot b, \left( \begin{array}{c}4\\3\\ - 1\end{array} \right) \bullet \left( \begin{array}{c}2\\1\\11\end{array} \right)
correct substitution A1
eg 4(2) + 3(1) + ( - 1)(11),{\text{ }}8 + 3 - 11
calculating a \cdot b = 0 A1
Note: Do not award the final A1 without evidence of calculation.
vectors are perpendicular AG N0
[5 marks]
Note: Candidates may take different approaches, which do not necessarily involve vectors.
In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.
METHOD 1
attempt to find \overrightarrow {{\text{QP}}} or \overrightarrow {{\text{PQ}}} (M1)
correct working (may be seen on diagram) A1
eg \overrightarrow {{\text{QP}}} = \left( \begin{array}{c} - 4\\ - 3\\1\end{array} \right), \overrightarrow {{\text{PQ}}} = \left( \begin{array}{c}7\\5\\3\end{array} \right) - \left( \begin{array}{c}3\\2\\4\end{array} \right)
recognizing {\text{R}} is on {L_1} (seen anywhere) (R1)
eg on diagram
{\text{Q}} and {\text{R}} are equidistant from {\text{P}} (seen anywhere) (R1)
eg \overrightarrow {{\text{QP}}} = \overrightarrow {{\text{PR}}} , marked on diagram
correct working (A1)
eg \left( \begin{array}{c}3\\2\\4\end{array} \right) - \left( \begin{array}{c}7\\5\\3\end{array} \right) = \left( \begin{array}{c}x\\y\\z\end{array} \right) - \left( \begin{array}{c}3\\2\\4\end{array} \right),\left( \begin{array}{c} - 4\\ - 3\\1\end{array} \right) + \left( \begin{array}{c}3\\2\\4\end{array} \right)
{\text{R}}(–1, –1, 5) (accept position vector) A1 N3
METHOD 2
recognizing {\text{R}} is on {L_1} (seen anywhere) (R1)
eg on diagram
{\text{Q}} and {\text{R}} are equidistant from {\text{P}} (seen anywhere) (R1)
eg {\text{P}} midpoint of {\text{QR}}, marked on diagram
valid approach to find one coordinate of mid-point (M1)
eg {x_p} = \frac{{{x_Q} + {x_R}}}{2},{\text{ }}2{y_p} = {y_Q} + {y_R},{\text{ }}\frac{1}{2}\left( {{z_Q} + {z_R}} \right)
one correct substitution A1
eg {x_R} = 3 + (3 - 7),{\text{ }}2 = \frac{{5 + {y_R}}}{2},{\text{ }}4 = \frac{1}{2}(z + 3)
correct working for one coordinate (A1)
eg {x_R} = 3 - 4,{\text{ }}4 - 5 = {y_R},{\text{ }}8 = (z + 3)
{\text{R}} (-1, -1, 5) (accept position vector) A1 N3
[6 marks]