Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 6 Reference code 14M.1.sl.TZ1.8
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 8 Adapted from N/A

Question

The line L1 passes through the points A(2,1,4) and B(1,1,5).

Another line L2 has equation r(474)+s(011) . The lines L1 and L2 intersect at the point P.

Show that AB=  (101)

[1]
a.

Hence, write down a direction vector for L1;

[1]
b(i).

Hence, write down a vector equation for L1.

[2]
b(ii).

Find the coordinates of P.

[6]
c.

Write down a direction vector for L2.

[1]
d(i).

Hence, find the angle between L1 and L2.

[6]
d(ii).

Markscheme

correct approach     A1

eg   (115)(214), AO+OB, ba

AB=  (101)    AG     N0

[1 mark]

a.

correct vector (or any multiple)     A1     N1

eg     d =  (101)

[1 mark]

b(i).

any correct equation in the form r = a + tb     (accept any parameter for t)

where a is (214) or (115) , and b is a scalar multiple of  (101)     A2     N2

eg   r(115)+t(101),(xyz)=(2s14+s)

 

Note:     Award A1 for a + tb, A1 for L1 = a + tb, A0 for r = b + ta.

 

[2 marks]

b(ii).

valid approach     (M1)

eg     r1=r2, (214)+t(101)=(474)+s(011)

one correct equation in one parameter     A1

eg     2t=4,1=7s,1t=4

attempt to solve     (M1)

eg     24=t,s=71,t=14

one correct parameter     A1

eg     t=2,s=6,t=3,

attempt to substitute their parameter into vector equation     (M1)

eg     (474)+6(011)

P(4, 1, 2)   (accept position vector)     A1     N2

[6 marks]

c.

correct direction vector for L2     A1     N1

eg     (011)(022)

 

[1 mark]

d(i).

correct scalar product and magnitudes for their direction vectors     (A1)(A1)(A1)

scalar product =0×1+1×0+1×1 (=1)

magnitudes =02+(1)2+12, 12+02+12(2, 2)

attempt to substitute their values into formula     M1

eg   0+0+1(02+(1)2+12)×(12+02+12), 12×2

correct value for cosine, 12     A1

angle is π3 (=60)     A1     N1

[6 marks]

d(ii).

Examiners report

[N/A]
a.
[N/A]
b(i).
[N/A]
b(ii).
[N/A]
c.
[N/A]
d(i).
[N/A]
d(ii).

Syllabus sections

Topic 4 - Vectors » 4.4 » Finding the point of intersection of two lines.
Show 28 related questions

View options