User interface language: English | Español

Date May 2014 Marks available 3 Reference code 14M.1.sl.TZ2.2
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 2 Adapted from N/A

Question

Find the value of each of the following, giving your answer as an integer.

\({\log _6}36\)

[2]
a.

\({\log _6}4 + {\log _6}9\)

[2]
b.

\({\log _6}2 - {\log _6}12\)

[3]
c.

Markscheme

correct approach     (A1)

eg     \({6^x} = 36,{\text{ }}{6^2}\)

\(2\)      A1     N2

[2 marks]

a.

correct simplification     (A1)

eg     \({\log _6}36,{\text{ }}\log (4 \times 9)\)

\(2\)      A1      N2

[2 marks]

b.

correct simplification     (A1)

eg     \({\log _6}\frac{2}{{12}},{\text{ }}\log (2 \div 12)\)

correct working     (A1)

eg     \({\log _6}\frac{1}{6},{\text{ }}{6^{ - 1}} = \frac{1}{6}{,6^x} = \frac{1}{6}\)

\(-1\)     A1     N2

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1 - Algebra » 1.2 » Laws of exponents; laws of logarithms.
Show 41 related questions

View options