Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.1.sl.TZ0.9
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 9 Adapted from N/A

Question

The first two terms of an infinite geometric sequence, in order, are

2log2x, log2x, where x>0.

The first three terms of an arithmetic sequence, in order, are

log2x, log2(x2), log2(x4), where x>0.

Let S12 be the sum of the first 12 terms of the arithmetic sequence.

Find r.

[2]
a.

Show that the sum of the infinite sequence is 4log2x.

[2]
b.

Find d, giving your answer as an integer.

[4]
c.

Show that S12=12log2x66.

[2]
d.

Given that S12 is equal to half the sum of the infinite geometric sequence, find x, giving your answer in the form 2p, where pQ.

[3]
e.

Markscheme

evidence of dividing terms (in any order)     (M1)

egμ2μ1, 2log2xlog2x

r=12    A1     N2

[2 marks]

a.

correct substitution     (A1)

eg2log2x112

correct working     A1

eg2log2x12

S=4log2x     AG     N0

[2 marks]

b.

evidence of subtracting two terms (in any order)     (M1)

egu3u2, log2xlog2x2

correct application of the properties of logs     (A1)

eglog2(x2x), log2(x2×1x), (log2xlog22)log2x

correct working     (A1)

eglog212, log22

d=1    A1     N3

[4 marks]

c.

correct substitution into the formula for the sum of an arithmetic sequence     (A1)

eg122(2log2x+(121)(1))

correct working     A1

eg6(2log2x11), 122(2log2x11)

12log2x66    AG     N0

[2 marks]

d.

correct equation     (A1)

eg12log2x66=2log2x

correct working     (A1)

eg10log2x=66, log2x=6.6, 266=x10, log2(x12x2)=66

x=26.6 (accept p=6610)     A1     N2

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 1 - Algebra » 1.2 » Laws of exponents; laws of logarithms.
Show 41 related questions

View options