User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.sl.TZ1.5
Level SL only Paper 1 Time zone TZ1
Command term Find Question number 5 Adapted from N/A

Question

Let \(f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }}\), for \(x > \frac{1}{2}\).

Find \(\int {{{\left( {f\left( x \right)} \right)}^2}{\text{d}}x} \).

[3]
a.

Part of the graph of f is shown in the following diagram.

The shaded region R is enclosed by the graph of f, the x-axis, and the lines x = 1 and x = 9 . Find the volume of the solid formed when R is revolved 360° about the x-axis.

[4]
b.

Markscheme

correct working      (A1)

eg   \(\int {\frac{1}{{2x - 1}}{\text{d}}x,\,\,\int {{{\left( {2x - 1} \right)}^{ - 1}},\,\,\frac{1}{{2x - 1}},\,\,\int {{{\left( {\frac{1}{{\sqrt u }}} \right)}^2}\frac{{{\text{d}}u}}{2}} } } \)

\({\int {\left( {f\left( x \right)} \right)} ^2}{\text{d}}x = \frac{1}{2}{\text{ln}}\left( {2x - 1} \right) + c\)      A2 N3

Note: Award A1 for \(\frac{1}{2}{\text{ln}}\left( {2x - 1} \right)\).

[3 marks]

a.

attempt to substitute either limits or the function into formula involving f 2 (accept absence of \(\pi \) / dx)     (M1)

eg   \(\int_1^9 {{y^2}{\text{d}}x,\,\,} \pi {\int {\left( {\frac{1}{{\sqrt {2x - 1} }}} \right)} ^2}{\text{d}}x,\,\,\left[ {\frac{1}{2}{\text{ln}}\left( {2x - 1} \right)} \right]_1^9\)

substituting limits into their integral and subtracting (in any order)     (M1)

eg  \(\frac{\pi }{2}\left( {{\text{ln}}\left( {17} \right) - {\text{ln}}\left( 1 \right)} \right),\,\,\pi \left( {0 - \frac{1}{2}{\text{ln}}\left( {2 \times 9 - 1} \right)} \right)\)

correct working involving calculating a log value or using log law     (A1)

eg  \({\text{ln}}\left( 1 \right) = 0,\,\,{\text{ln}}\left( {\frac{{17}}{1}} \right)\)

\(\frac{\pi }{2}{\text{ln}}17\,\,\,\,\left( {{\text{accept }}\pi {\text{ln}}\sqrt {17} } \right)\)    A1 N3

Note: Full FT may be awarded as normal, from their incorrect answer in part (a), however, do not award the final two A marks unless they involve logarithms.

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Calculus » 6.4 » Integration by inspection, or substitution of the form \(\mathop \int \nolimits f\left( {g\left( x \right)} \right)g'\left( x \right){\text{d}}x\) .

View options