Date | May 2017 | Marks available | 4 | Reference code | 17M.1.sl.TZ1.5 |
Level | SL only | Paper | 1 | Time zone | TZ1 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Find \(\int {x{{\text{e}}^{{x^2} - 1}}{\text{d}}x} \).
Find \(f(x)\), given that \(f’(x) = x{{\text{e}}^{{x^2} - 1}}\) and \(f( - 1) = 3\).
Markscheme
valid approach to set up integration by substitution/inspection (M1)
eg\(\,\,\,\,\,\)\(u = {x^2} - 1,{\text{ d}}u = 2x,{\text{ }}\int {2x{{\text{e}}^{{x^2} - 1}}{\text{d}}x} \)
correct expression (A1)
eg\(\,\,\,\,\,\)\(\frac{1}{2}\int {2x{{\text{e}}^{{x^2} - 1}}{\text{d}}x,{\text{ }}\frac{1}{2}\int {{{\text{e}}^u}{\text{d}}u} } \)
\(\frac{1}{2}{{\text{e}}^{{x^2} - 1}} + c\) A2 N4
Notes: Award A1 if missing “\( + c\)”.
[4 marks]
substituting \(x = - 1\) into their answer from (a) (M1)
eg\(\,\,\,\,\,\)\(\frac{1}{2}{{\text{e}}^0},{\text{ }}\frac{1}{2}{{\text{e}}^{1 - 1}} = 3\)
correct working (A1)
eg\(\,\,\,\,\,\)\(\frac{1}{2} + c = 3,{\text{ }}c = 2.5\)
\(f(x) = \frac{1}{2}{{\text{e}}^{{x^2} - 1}} + 2.5\) A1 N2
[3 marks]