Date | May 2017 | Marks available | 6 | Reference code | 17M.1.sl.TZ2.5 |
Level | SL only | Paper | 1 | Time zone | TZ2 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Let f′(x)=3x2(x3+1)5. Given that f(0)=1, find f(x).
Markscheme
valid approach (M1)
eg∫f′dx, ∫3x2(x3+1)5dx
correct integration by substitution/inspection A2
egf(x)=−14(x3+1)−4+c, −14(x3+1)4
correct substitution into their integrated function (must include c) M1
eg1=−14(03+1)4+c, −14+c=1
Note: Award M0 if candidates substitute into f′ or f″.
c = \frac{5}{4} (A1)
f(x) = - \frac{1}{4}{({x^3} + 1)^{ - 4}} + \frac{5}{4}{\text{ }}\left( { = \frac{{ - 1}}{{4{{({x^3} + 1)}^4}}} + \frac{5}{4},{\text{ }}\frac{{5{{({x^3} + 1)}^4} - 1}}{{4{{({x^3} + 1)}^4}}}} \right) A1 N4
[6 marks]
Examiners report
[N/A]