User interface language: English | Español

Date May 2017 Marks available 6 Reference code 17M.1.sl.TZ2.5
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 5 Adapted from N/A

Question

Let f(x)=3x2(x3+1)5. Given that f(0)=1, find f(x).

Markscheme

valid approach     (M1)

egfdx, 3x2(x3+1)5dx

correct integration by substitution/inspection     A2

egf(x)=14(x3+1)4+c, 14(x3+1)4

correct substitution into their integrated function (must include c)     M1

eg1=14(03+1)4+c, 14+c=1

 

Note:     Award M0 if candidates substitute into f or f.

 

c=54     (A1)

f(x)=14(x3+1)4+54 (=14(x3+1)4+54, 5(x3+1)414(x3+1)4)     A1     N4

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Calculus » 6.4 » Integration by inspection, or substitution of the form f(g(x))g(x)dx .

View options