Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 6 Reference code 17M.1.sl.TZ2.5
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 5 Adapted from N/A

Question

Let f(x)=3x2(x3+1)5. Given that f(0)=1, find f(x).

Markscheme

valid approach     (M1)

egfdx, 3x2(x3+1)5dx

correct integration by substitution/inspection     A2

egf(x)=14(x3+1)4+c, 14(x3+1)4

correct substitution into their integrated function (must include c)     M1

eg1=14(03+1)4+c, 14+c=1

 

Note:     Award M0 if candidates substitute into f or f.

 

c = \frac{5}{4}     (A1)

f(x) =  - \frac{1}{4}{({x^3} + 1)^{ - 4}} + \frac{5}{4}{\text{ }}\left( { = \frac{{ - 1}}{{4{{({x^3} + 1)}^4}}} + \frac{5}{4},{\text{ }}\frac{{5{{({x^3} + 1)}^4} - 1}}{{4{{({x^3} + 1)}^4}}}} \right)     A1     N4

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 6 - Calculus » 6.4 » Integration by inspection, or substitution of the form \mathop \int \nolimits f\left( {g\left( x \right)} \right)g'\left( x \right){\text{d}}x .

View options