Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.1.sl.TZ0.5
Level SL only Paper 1 Time zone TZ0
Command term Find Question number 5 Adapted from N/A

Question

Find ex1+exdx .

[3]
a.

Find sin3xcos3xdx .

[4]
b.

Markscheme

attempt to use substitution or inspection     M1

e.g. u=1+ex so dudx=ex

correct working     A1

e.g. duu=lnu

ln(1+ex)+C     A1     N3

[3 marks]

a.

METHOD 1

attempt to use substitution or inspection     M1

e.g. let u=sin3x

dudx=3cos3x     A1

13udu=13×u22+C    A1

sin3xcos3xdx=sin23x6+C     A1     N2

METHOD 2

attempt to use substitution or inspection     M1

e.g. let u=cos3x

dudx=3sin3x     A1

13udu=13×u22+C     A1

sin3xcos3xdx=cos23x6+C     A1     N2

METHOD 3

recognizing double angle     M1

correct working     A1

e.g. 12sin6x

sin6xdx=cos6x6+C     A1

12sin6xdx=cos6x12+C     A1     N2

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Calculus » 6.4 » Integration by inspection, or substitution of the form f(g(x))g(x)dx .

View options