Date | None Specimen | Marks available | 4 | Reference code | SPNone.1.sl.TZ0.5 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Find \(\int {\frac{{{{\rm{e}}^x}}}{{1 + {{\rm{e}}^x}}}} {\rm{d}}x\) .
Find \(\int {\sin 3x\cos 3x{\rm{d}}x} \) .
Markscheme
attempt to use substitution or inspection M1
e.g. \(u = 1 + {{\rm{e}}^x}\) so \(\frac{{{\rm{d}}u}}{{{\rm{d}}x}} = {{\rm{e}}^x}\)
correct working A1
e.g. \(\int {\frac{{{\rm{d}}u}}{u}} = \ln u\)
\(\ln (1 + {{\rm{e}}^x}) + C\) A1 N3
[3 marks]
METHOD 1
attempt to use substitution or inspection M1
e.g. let \(u = \sin 3x\)
\(\frac{{{\rm{d}}u}}{{{\rm{d}}x}} = 3\cos 3x\) A1
\(\frac{1}{3}\int {u{\rm{d}}u = } \frac{1}{3} \times \frac{{{u^2}}}{2} + C\) A1
\(\int {\sin 3x\cos 3x{\rm{d}}x = } \frac{{{{\sin }^2}3x}}{6} + C\) A1 N2
METHOD 2
attempt to use substitution or inspection M1
e.g. let \(u = \cos 3x\)
\(\frac{{{\rm{d}}u}}{{{\rm{d}}x}} = - 3\sin 3x\) A1
\( - \frac{1}{3}\int {u{\rm{d}}u = } - \frac{1}{3} \times \frac{{{u^2}}}{2} + C\) A1
\(\int {\sin 3x\cos 3x{\rm{d}}x = } \frac{{{{\cos }^2}3x}}{6} + C\) A1 N2
METHOD 3
recognizing double angle M1
correct working A1
e.g. \(\frac{1}{2}\sin 6x\)
\(\int {\sin 6x{\rm{d}}x = } \frac{{ - \cos 6x}}{6} + C\) A1
\(\int {\frac{1}{2}\sin 6x{\rm{d}}x = - \frac{{\cos 6x}}{{12}}} + C\) A1 N2
[4 marks]