Date | None Specimen | Marks available | 4 | Reference code | SPNone.1.sl.TZ0.5 |
Level | SL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 5 | Adapted from | N/A |
Question
Find ∫ex1+exdx .
Find ∫sin3xcos3xdx .
Markscheme
attempt to use substitution or inspection M1
e.g. u=1+ex so dudx=ex
correct working A1
e.g. ∫duu=lnu
ln(1+ex)+C A1 N3
[3 marks]
METHOD 1
attempt to use substitution or inspection M1
e.g. let u=sin3x
dudx=3cos3x A1
13∫udu=13×u22+C A1
∫sin3xcos3xdx=sin23x6+C A1 N2
METHOD 2
attempt to use substitution or inspection M1
e.g. let u=cos3x
dudx=−3sin3x A1
−13∫udu=−13×u22+C A1
∫sin3xcos3xdx=cos23x6+C A1 N2
METHOD 3
recognizing double angle M1
correct working A1
e.g. 12sin6x
∫sin6xdx=−cos6x6+C A1
∫12sin6xdx=−cos6x12+C A1 N2
[4 marks]