Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2014 Marks available 4 Reference code 14M.1.sl.TZ2.10
Level SL only Paper 1 Time zone TZ2
Command term Find Question number 10 Adapted from N/A

Question

Let f(x)=2xx2+5.

Use the quotient rule to show that f(x)=102x2(x2+5)2.

[4]
a.

Find 2xx2+5dx.

[4]
b.

The following diagram shows part of the graph of f.


The shaded region is enclosed by the graph of f, the x-axis, and the lines x=5 and x=q. This region has an area of ln7. Find the value of q.

[7]
c.

Markscheme

derivative of 2x is 2 (must be seen in quotient rule)     (A1)

derivative of x2+5 is 2x (must be seen in quotient rule)     (A1)

correct substitution into quotient rule     A1

eg     (x2+5)(2)(2x)(2x)(x2+5)2, 2(x2+5)4x2(x2+5)2

correct working which clearly leads to given answer   A1

eg    2x2+104x2(x2+5)2, 2x2+104x2x4+10x2+25

f(x)=102x2(x2+5)2     AG     N0

[4 marks]

a.

valid approach using substitution or inspection     (M1)

eg     u=x2+5, du=2xdx, 12ln(x2+5)

2xx2+5dx=1udu     (A1)

1udu=lnu+c     (A1)

ln(x2+5)+c     A1     N4

[4 marks]

b.

correct expression for area     (A1)

eg     [ln(x2+5)]q5, q52xx2+5dx

substituting limits into their integrated function and subtracting (in either order)     (M1)

eg     ln(q2+5)ln(52+5)

correct working     (A1)

eg     ln(q2+5)ln10, lnq2+510

equating their expression to ln7 (seen anywhere)     (M1)

eg     ln(q2+5)ln10=ln7, lnq2+510=ln7, ln(q2+5)=ln7+ln10

correct equation without logs     (A1)

eg     q2+510=7, q2+5=70

q2=65     (A1)

q=65     A1     N3

 

Note: Award A0 for q=±65.

 

[7 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Calculus » 6.4 » Integration by inspection, or substitution of the form f(g(x))g(x)dx .

View options