InThinking Revision Sites

INTHINKING REVISION SITES

Own your learning

Why not also try our independent learning self-study & revision websites for students?

We currenly offer the following DP Sites: Biology, Chemistry, English A Lang & Lit, Maths A&A, Maths A&I, Physics, Spanish B

"The site is great for revising the basic understandings of each topic quickly. Especially since you are able to test yourself at the end of each page and easily see where yo need to improve."

"It is life saving... I am passing IB because of this site!"

Basic (limited access) subscriptions are FREE. Check them out at:

P.o.t.W. #9 Solution

Problem of the Week #9   (31 May 2020)

SOLUTION

gradient of line, \(m = \frac{{a{c^2} - a{b^2}}}{{c - b}} = \frac{{a\left( {c + b} \right)\left( {c - b} \right)}}{{c - b}} = ac + ab\)

equation of line:  \(y - a{b^2} = \left( {ac + ab} \right)\left( {x - b} \right)\)

\(y = \left( {ac + ab} \right)x - abc - a{b^2} + a{b^2}\)

\(y = \left( {ac + ab} \right)x - abc\)

area of bounded region  \( = \int_b^c {\left\{ {\left[ {\left( {ac + ab} \right)x - abc} \right] - a{x^2}} \right\}} \,dx\)

\( = \int_b^c {\left\{ { - a{x^2} + \left( {ac + ab} \right)x - abc} \right\}dx} \)

\( = \left. { - \frac{1}{3}a{x^3} + \frac{1}{2}\left( {ac + ab} \right){x^2} - abcx} \right]_b^c\)

\( = \left[ { - \frac{1}{3}a{c^3} + \frac{1}{2}\left( {ac + ab} \right){c^2} - ab{c^2}} \right] - \left[ { - \frac{1}{3}a{b^3} + \frac{1}{2}\left( {ac + ab} \right){b^2} - a{b^2}c} \right]\)

\( = - \frac{1}{3}a{c^3} + \frac{1}{2}a{c^3} + \frac{1}{2}ab{c^2} - ab{c^2} + \frac{1}{3}a{b^3} - \frac{1}{2}a{b^3} - \frac{1}{2}a{b^2}c + a{b^2}c\)

\( = \frac{1}{6}a{c^3} - \frac{1}{6}a{b^3} - \frac{1}{2}ab{c^2} + \frac{1}{2}a{b^2}c\)

\( = \frac{a}{6}\left( {{c^3} - {b^3}} \right) - \frac{{abc}}{2}\left( {c - b} \right)\)

\( = \frac{a}{6}\left( {c - b} \right)\left( {{c^2} + bc + {b^2}} \right) - \frac{{abc}}{2}\left( {c - b} \right)\)

\( = \frac{a}{6}\left( {c - b} \right)\left[ {\left( {{c^2} + bc + {b^2}} \right) - 3bc} \right]\)

\( = \frac{a}{6}\left( {c - b} \right)\left( {{c^2} - 2bc + {b^2}} \right)\)

\( = \frac{a}{6}\left( {c - b} \right){\left( {c - b} \right)^2}\;\;\; \Rightarrow \;\;\;\)thus, area of bounded region \( = \frac{a}{6}{\left( {c - b} \right)^3}\)     Q.E.D.

Comment: For a given value of a, the area of the parabolic segment is determined by the value of \(c - b\). If the horizontal distance between the points of intersection is constant then the area of the parabolic segment will remain constant regardless of the location of the points of intersection.