P.o.t.W. #9 Solution
Problem of the Week #9 (31 May 2020)
SOLUTION
gradient of line, \(m = \frac{{a{c^2} - a{b^2}}}{{c - b}} = \frac{{a\left( {c + b} \right)\left( {c - b} \right)}}{{c - b}} = ac + ab\)
equation of line: \(y - a{b^2} = \left( {ac + ab} \right)\left( {x - b} \right)\)
\(y = \left( {ac + ab} \right)x - abc - a{b^2} + a{b^2}\)
\(y = \left( {ac + ab} \right)x - abc\)
area of bounded region \( = \int_b^c {\left\{ {\left[ {\left( {ac + ab} \right)x - abc} \right] - a{x^2}} \right\}} \,dx\)
\( = \int_b^c {\left\{ { - a{x^2} + \left( {ac + ab} \right)x - abc} \right\}dx} \)
\( = \left. { - \frac{1}{3}a{x^3} + \frac{1}{2}\left( {ac + ab} \right){x^2} - abcx} \right]_b^c\)
\( = \left[ { - \frac{1}{3}a{c^3} + \frac{1}{2}\left( {ac + ab} \right){c^2} - ab{c^2}} \right] - \left[ { - \frac{1}{3}a{b^3} + \frac{1}{2}\left( {ac + ab} \right){b^2} - a{b^2}c} \right]\)
\( = - \frac{1}{3}a{c^3} + \frac{1}{2}a{c^3} + \frac{1}{2}ab{c^2} - ab{c^2} + \frac{1}{3}a{b^3} - \frac{1}{2}a{b^3} - \frac{1}{2}a{b^2}c + a{b^2}c\)
\( = \frac{1}{6}a{c^3} - \frac{1}{6}a{b^3} - \frac{1}{2}ab{c^2} + \frac{1}{2}a{b^2}c\)
\( = \frac{a}{6}\left( {{c^3} - {b^3}} \right) - \frac{{abc}}{2}\left( {c - b} \right)\)
\( = \frac{a}{6}\left( {c - b} \right)\left( {{c^2} + bc + {b^2}} \right) - \frac{{abc}}{2}\left( {c - b} \right)\)
\( = \frac{a}{6}\left( {c - b} \right)\left[ {\left( {{c^2} + bc + {b^2}} \right) - 3bc} \right]\)
\( = \frac{a}{6}\left( {c - b} \right)\left( {{c^2} - 2bc + {b^2}} \right)\)
\( = \frac{a}{6}\left( {c - b} \right){\left( {c - b} \right)^2}\;\;\; \Rightarrow \;\;\;\)thus, area of bounded region \( = \frac{a}{6}{\left( {c - b} \right)^3}\) Q.E.D.
Comment: For a given value of a, the area of the parabolic segment is determined by the value of \(c - b\). If the horizontal distance between the points of intersection is constant then the area of the parabolic segment will remain constant regardless of the location of the points of intersection.
IB Docs (2) Team