DP Mathematics: Applications and Interpretation Questionbank

AHL 5.11—Indefinite integration, reverse chain, by substitution
Description
[N/A]Directly related questions
-
20N.1.SL.TZ0.S_6:
The graph of a function f passes through the point (ln 4, 20).
Given that f'(x)=6e2x, find f(x).
-
20N.2.SL.TZ0.S_10a:
Show that f''(x)=24-6x2(x2+4)2.
-
20N.2.SL.TZ0.S_10b:
Find the least value of n.
-
20N.2.SL.TZ0.S_10c:
Find ∫6xx2+4dx.
-
20N.2.SL.TZ0.S_10d:
Let R be the region enclosed by the graph of f, the x-axis and the lines x=1 and x=3. The area of R is 19.6, correct to three significant figures.
Find f(x).
-
EXN.1.AHL.TZ0.10a.i:
Find ∫5010002+tdt.
-
EXN.1.AHL.TZ0.10a.ii:
State in context what this value represents.
-
EXN.1.AHL.TZ0.10c:
Determine ∫3650P(t) dt and state what it represents.
-
EXN.1.AHL.TZ0.10b:
Find an expression for P in terms of t.
-
22M.1.AHL.TZ1.14a.i:
Expand (1u+1)2.
-
22M.1.AHL.TZ1.14a.ii:
Find ∫(1(x+2)+1)2dx.
-
18N.2.AHL.TZ0.H_2:
A function f satisfies the conditions f(0)=−4, f(1)=0 and its second derivative is f″(x)=15√x+1(x+1)2, x ≥ 0.
Find f(x).
-
19M.1.AHL.TZ1.H_8a:
Write down the x-coordinate of the point of inflexion on the graph of y=f(x).
-
19M.1.AHL.TZ1.H_8b:
find the value of f(1).
-
19M.1.AHL.TZ1.H_8c:
find the value of f(4).
-
19M.1.AHL.TZ1.H_8d:
Sketch the curve y=f(x), 0 ≤ x ≤ 5 indicating clearly the coordinates of the maximum and minimum points and any intercepts with the coordinate axes.
-
18M.1.AHL.TZ2.H_6a.i:
Find f′(x).
-
18M.1.AHL.TZ2.H_6a.ii:
Find g′(x).
-
18M.1.AHL.TZ2.H_6b:
Hence, or otherwise, find π∫0e−xsinxdx.
-
18M.1.SL.TZ2.S_2a:
Find ∫(6x2−3x)dx.
-
18M.1.SL.TZ2.S_2b:
Find the area of the region enclosed by the graph of f, the x-axis and the lines x = 1 and x = 2 .
-
17M.1.SL.TZ1.S_5a:
Find ∫xex2−1dx.
-
17M.1.SL.TZ1.S_5b:
Find f(x), given that f′(x)=xex2−1 and f(−1)=3.
-
17M.1.SL.TZ2.S_5:
Let f′(x)=3x2(x3+1)5. Given that f(0)=1, find f(x).
-
18M.1.SL.TZ1.S_5a:
Find ∫(f(x))2dx.
-
18M.1.SL.TZ1.S_5b:
Part of the graph of f is shown in the following diagram.
The shaded region R is enclosed by the graph of f, the x-axis, and the lines x = 1 and x = 9 . Find the volume of the solid formed when R is revolved 360° about the x-axis.
-
18N.1.SL.TZ0.S_6:
Let f(x)=6−2x√16+6x−x2. The following diagram shows part of the graph of f.
The region R is enclosed by the graph of f, the x-axis, and the y-axis. Find the area of R.
-
16N.1.SL.TZ0.S_6:
Let f′(x)=sin3(2x)cos(2x). Find f(x), given that f(π4)=1.
-
19M.1.SL.TZ1.S_5:
The derivative of a function f is given by f′(x)=2e−3x. The graph of f passes through (13,5).
Find f(x).
-
19M.1.SL.TZ2.S_10a:
Find dydx.
-
19M.1.SL.TZ2.S_10b:
Hence find ∫(3x2+1)√x3+xdx.
-
19M.1.SL.TZ2.S_10c:
Write down an expression for the area of R.
-
19M.1.SL.TZ2.S_10d:
Hence find the exact area of R.
-
18M.1.AHL.TZ1.H_4a:
∫0−2(f(x) + 2)dx.
-
18M.1.AHL.TZ1.H_4b:
∫0−2f(x + 2)dx.