User interface language: English | Español

Date May 2018 Marks available 1 Reference code 18M.1.AHL.TZ2.H_6
Level Additional Higher Level Paper Paper 1 Time zone Time zone 2
Command term Find Question number H_6 Adapted from N/A

Question

Consider the functions  f , g ,  defined for  x R , given by f ( x ) = e x sin x and g ( x ) = e x cos x .

Find  f ( x ) .

[2]
a.i.

Find  g ( x ) .

[1]
a.ii.

Hence, or otherwise, find 0 π e x sin x d x .

[4]
b.

Markscheme

attempt at product rule      M1

f ( x ) = e x sin x + e x cos x       A1

[2 marks]

a.i.

g ( x ) = e x cos x e x sin x       A1

[1 mark]

a.ii.

METHOD 1

Attempt to add  f ( x ) and  g ( x )       (M1)

f ( x ) + g ( x ) = 2 e x sin x     A1

0 π e x sin x d x = [ e x 2 ( sin x + cos x ) ] 0 π (or equivalent)      A1

Note: Condone absence of limits.

= 1 2 ( 1 + e π )     A1

 

METHOD 2

I = e x sin x d x

= e x cos x e x cos x d x OR  = e x sin x + e x cos x d x      M1A1

= e x sin x e x cos x e x sin x d x

I = 1 2 e x ( sin x + cos x )      A1

0 π e x sin x d x = 1 2 ( 1 + e π )     A1

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 5—Calculus » AHL 5.11—Indefinite integration, reverse chain, by substitution
Show 34 related questions
Topic 5—Calculus

View options