User interface language: English | Español

Date May 2021 Marks available 5 Reference code 21M.2.SL.TZ2.2
Level Standard Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number 2 Adapted from N/A

Question

A farmer owns a field in the shape of a triangle ABCABC such that AB=650m, AC=1005mAB=650m, AC=1005m and BC=1225mBC=1225m.

The local town is planning to build a highway that will intersect the borders of the field at points DD and EE, where DC=210mDC=210m and CÊD=100°CÊD=100°, as shown in the diagram below.

The town wishes to build a carpark here. They ask the farmer to exchange the part of the field represented by triangle DCEDCE. In return the farmer will get a triangle of equal area ADFADF, where FF lies on the same line as DD and EE, as shown in the diagram above.

Find the size of AĈBAĈB.

[3]
a.

Find DEDE.

[3]
b.

Find the area of triangle DCEDCE.

[5]
c.

Estimate DFDF. You may assume the highway has a width of zero.

[4]
d.

Markscheme

use of cosine rule              (M1)   

AĈB=cos-1(10052+12252-65022×1005×1225)AĈB=cos1(10052+1225265022×1005×1225)             (A1) 

=32°  (31.9980)=32°  (31.9980)                        A1


[3 marks]

a.

use of sine rule             (M1)   

DEsin31.9980°=210sin100°DEsin31.9980°=210sin100°            (A1) 

(DE=)113m  (112.9937)(DE=)113m  (112.9937)                    A1



[3 marks]

b.

METHOD 1

180°-(100°+their part (a))180°(100°+their part (a))            (M1) 

=48.0019°=48.0019°  OR  0.8377910.837791            (A1) 

substituted area of triangle formula            (M1) 

12×112.9937×210×sin48.002°12×112.9937×210×sin48.002°            (A1) 

8820m2  (8817.18)8820m2  (8817.18)                  A1

 

METHOD 2

CEsin(180-100-their part (a))=210sin100CEsin(180100their part (a))=210sin100            (M1) 

(CE=) 158.472(CE=) 158.472            (A1) 

substituted area of triangle formula            (M1) 


EITHER

12×112.993×158.472×sin10012×112.993×158.472×sin100            (A1) 


OR

12×210×158.472×sin(their part (a))12×210×158.472×sin(their part (a))            (A1) 


THEN

8820m2  (8817.18)8820m2  (8817.18)                  A1

 

METHOD 3

CE2=2102+112.9932-(2×210×112.993×cos(180-100-their part (a)))CE2=2102+112.9932(2×210×112.993×cos(180100their part (a)))            (M1) 

(CE=) 158.472(CE=) 158.472            (A1) 

substituted area of triangle formula            (M1) 

12×112.993×158.472×sin10012×112.993×158.472×sin100            (A1) 

8820m2  (8817.18)8820m2  (8817.18)                  A1

[5 marks]

c.

1005-2101005210  OR  795795            (A1) 

equating answer to part (c) to area of a triangle formula        (M1) 

8817.18=12×DF×(1005-210)×sin48.002°8817.18=12×DF×(1005210)×sin48.002°            (A1) 

(DF=) 29.8m  (29.8473)(DF=) 29.8m  (29.8473)                  A1

 

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3—Geometry and trigonometry » SL 3.2—2d and 3d trig
Show 99 related questions
Topic 3—Geometry and trigonometry

View options