User interface language: English | Español

Date May 2021 Marks available 3 Reference code 21M.2.SL.TZ2.2
Level Standard Level Paper Paper 2 Time zone Time zone 2
Command term Find Question number 2 Adapted from N/A

Question

A farmer owns a field in the shape of a triangle ABC such that AB=650m, AC=1005m and BC=1225m.

The local town is planning to build a highway that will intersect the borders of the field at points D and E, where DC=210m and CÊD=100°, as shown in the diagram below.

The town wishes to build a carpark here. They ask the farmer to exchange the part of the field represented by triangle DCE. In return the farmer will get a triangle of equal area ADF, where F lies on the same line as D and E, as shown in the diagram above.

Find the size of AĈB.

[3]
a.

Find DE.

[3]
b.

Find the area of triangle DCE.

[5]
c.

Estimate DF. You may assume the highway has a width of zero.

[4]
d.

Markscheme

use of cosine rule              (M1)   

AĈB=cos-110052+12252-65022×1005×1225             (A1) 

=32°  31.9980                        A1


[3 marks]

a.

use of sine rule             (M1)   

DEsin31.9980°=210sin100°            (A1) 

DE=113m  112.9937                    A1



[3 marks]

b.

METHOD 1

180°-100°+their part a            (M1) 

=48.0019°  OR  0.837791            (A1) 

substituted area of triangle formula            (M1) 

12×112.9937×210×sin48.002°            (A1) 

8820m2  8817.18                  A1

 

METHOD 2

CEsin180-100-their part a=210sin100            (M1) 

CE= 158.472            (A1) 

substituted area of triangle formula            (M1) 


EITHER

12×112.993×158.472×sin100            (A1) 


OR

12×210×158.472×sintheir part a            (A1) 


THEN

8820m2  8817.18                  A1

 

METHOD 3

CE2=2102+112.9932-2×210×112.993×cos180-100-their part a            (M1) 

CE= 158.472            (A1) 

substituted area of triangle formula            (M1) 

12×112.993×158.472×sin100            (A1) 

8820m2  8817.18                  A1

[5 marks]

c.

1005-210  OR  795            (A1) 

equating answer to part (c) to area of a triangle formula        (M1) 

8817.18=12×DF×1005-210×sin48.002°            (A1) 

DF= 29.8m  29.8473                  A1

 

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3—Geometry and trigonometry » SL 3.2—2d and 3d trig
Show 99 related questions
Topic 3—Geometry and trigonometry

View options