User interface language: English | Español

Date November 2016 Marks available 5 Reference code 16N.1.AHL.TZ0.H_1
Level Additional Higher Level Paper Paper 1 Time zone Time zone 0
Command term Find Question number H_1 Adapted from N/A

Question

Find the coordinates of the point of intersection of the planes defined by the equations x+y+z=3, xy+z=5x+y+z=3, xy+z=5 and x+y+2z=6x+y+2z=6.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

for eliminating one variable from two equations     (M1)

eg, {(x+y+z=3)2x+2z=82x+3z=11(x+y+z=3)2x+2z=82x+3z=11     A1A1

for finding correctly one coordinate

eg, {(x+y+z=3)(2x+2z=8)z=3(x+y+z=3)(2x+2z=8)z=3     A1

for finding correctly the other two coordinates     A1

{x=1y=1z=3x=1y=1z=3

the intersection point has coordinates (1, 1, 3)(1, 1, 3)

METHOD 2

for eliminating two variables from two equations or using row reduction     (M1)

eg, {(x+y+z=3)2=2z=3(x+y+z=3)2=2z=3 or (111020001|323)111020001∣ ∣323     A1A1

for finding correctly the other coordinates     A1A1

{x=1y=1(z=3)x=1y=1(z=3) or (100010001|113)100010001∣ ∣113

the intersection point has coordinates (1, 1, 3)(1, 1, 3)

METHOD 3

|111111112|=2∣ ∣111111112∣ ∣=2    (A1)

attempt to use Cramer’s rule     M1

x=|311511612|2=22=1x=∣ ∣311511612∣ ∣2=22=1    A1

y=|131151162|2=22=1y=∣ ∣131151162∣ ∣2=22=1    A1

z=|113115116|2=62=3z=∣ ∣113115116∣ ∣2=62=3    A1

 

Note:     Award M1 only if candidate attempts to determine at least one of the variables using this method.

 

[5 marks]

Examiners report

[N/A]

Syllabus sections

Topic 4—Statistics and probability » SL 4.7—Discrete random variables
Show 78 related questions
Topic 4—Statistics and probability

View options