User interface language: English | Español

Date May Example question Marks available 8 Reference code EXM.1.AHL.TZ0.36
Level Additional Higher Level Paper Paper 1 Time zone Time zone 0
Command term Find Question number 36 Adapted from N/A

Question

Apply Prim’s algorithm to the weighted graph given below to obtain the minimal spanning tree starting with the vertex A.

Find the weight of the minimal spanning tree.

Markscheme

We start with point A and write S as the set of vertices and T as the set of edges.
The weights on each edge will be used in applying Prim’s algorithm.
Initially, S = {A}, T = Φ. In each subsequent stage, we shall update S and T.       

Step 1: Add edge h:   So S = {A, D},                              T = {h}
Step 2: Add edge e:   So S = {A, D, E}                          T = {h, e}
Step 3: Add edge d:   Then S = {A, D, E, F}                  T = {h, e, d}
Step 4: Add edge a:   Then S = {A, D, E, F, B}              T = {h, e, d, a}
Step 5: Add edge i:    Then S = {A, D, E, F, B, G}         T = {h, e, d, a, i}
Step 6: Add edge g:   Then S = (A, D, E, F, B, G, C}    T = {h, e, d, a, I, g}            (M4)(A3)

   Notes: Award (M4)(A3) for all 6 correct,                     
                         (M4)(A2) for 5 correct;                      
                         (M3)(A2) for 4 correct,                     
                         (M3)(A1) for 3 correct;                     
                         (M1)(A1) for 2 correct,                     
                         (M1)(AO) for 1 correct

   OR
   (M2) for the correct definition of Prim’s algorithm,
   (M2) for the correct application of Prim’s algorithm,
   (A3) for the correct answers at the last three stages.                

Now S has all the vertices and the minimal spanning tree is obtained.

The weight of the edges in T is 5 + 3 + 5 + 7 + 5 + 6

= 31        (A1)

[8 marks]

Examiners report

[N/A]

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.16—Tree and cycle algorithms, Chinese postman, travelling salesman
Show 87 related questions
Topic 3—Geometry and trigonometry

View options