Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May 2019 Marks available 4 Reference code 19M.1.AHL.TZ1.H_9
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Show that Question number H_9 Adapted from N/A

Question

Show that (sinx+cosx)2=1+sin2x.

[2]
a.

Show that sec2x+tan2x=cosx+sinxcosxsinx.

[4]
b.

Hence or otherwise find π60(sec2x+tan2x)dx in the form ln(a+b) where abZ.

[9]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

(sinx+cosx)2=sin2x+2sinxcosx+cos2x      M1A1

Note: Do not award the M1 for just sin2x+cos2x.

Note: Do not award A1 if correct expression is followed by incorrect working.

=1+sin2x      AG

[2 marks]

a.

sec2x+tan2x=1cos2x+sin2xcos2x     M1

Note: M1 is for an attempt to change both terms into sine and cosine forms (with the same argument) or both terms into functions of tanx.

=1+sin2xcos2x

=(sinx+cosx)2cos2xsin2x         A1A1

Note: Award A1 for numerator, A1 for denominator.

=(sinx+cosx)2(cosxsinx)(cosx+sinx)     M1

=cosx+sinxcosxsinx      AG

Note: Apply MS in reverse if candidates have worked from RHS to LHS.

Note: Alternative method using tan2x and sec2x in terms of tanx.

[4 marks]

b.

METHOD 1

π60(cosx+sinxcosxsinx)dx       A1

Note: Award A1 for correct expression with or without limits.

EITHER

=[ln(cosxsinx)]π60  or  [ln(cosxsinx)]0π6       (M1)A1A1

Note: Award M1 for integration by inspection or substitution, A1 for ln(cosxsinx)A1 for completely correct expression including limits.

=ln(cosπ6sinπ6)+ln(cos0sin0)       M1

Note: Award M1 for substitution of limits into their integral and subtraction.

=ln(3212)       (A1)

OR

let u=cosxsinx       M1

dudx=sinxcosx=(sinx+cosx)

32121(1u)du       A1A1

Note: Award A1 for correct limits even if seen later, A1 for integral.

=[lnu]32121  or  [lnu]13212       A1

=ln(3212)( + ln1)       M1

THEN

=ln(231)

Note: Award M1 for both putting the expression over a common denominator and for correct use of law of logarithms.

=ln(1+3)       (M1)A1

 

METHOD 2

[12ln(tan2x+sec2x)12ln(cos2x)]π60      A1A1

=12ln(3+2)12ln(12)0       A1A1(A1)

=12ln(4+23)       M1

=12ln((1+3)2)       M1A1

=ln(1+3)      A1

 

 

[9 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.10—Compound angle identities
Show 39 related questions
Topic 5 —Calculus » AHL 5.15—Further derivatives and indefinite integration of these, partial fractions
Topic 3— Geometry and trigonometry
Topic 5 —Calculus

View options