User interface language: English | Español

Date May 2019 Marks available 9 Reference code 19M.1.AHL.TZ1.H_9
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find and Hence or otherwise Question number H_9 Adapted from N/A

Question

Show that ( sin x + cos x ) 2 = 1 + sin 2 x .

[2]
a.

Show that sec 2 x + tan 2 x = cos x + sin x cos x sin x .

[4]
b.

Hence or otherwise find  0 π 6 ( sec 2 x + tan 2 x ) d x  in the form  ln ( a + b ) where a b Z .

[9]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

( sin x + cos x ) 2 = si n 2 x + 2 sin x cos x + co s 2 x       M1A1

Note: Do not award the M1 for just  si n 2 x + co s 2 x .

Note: Do not award A1 if correct expression is followed by incorrect working.

= 1 + sin 2 x       AG

[2 marks]

a.

sec 2 x + tan 2 x = 1 cos 2 x + sin 2 x cos 2 x      M1

Note: M1 is for an attempt to change both terms into sine and cosine forms (with the same argument) or both terms into functions of tan x .

= 1 + sin 2 x cos 2 x

= ( sin x + cos x ) 2 co s 2 x si n 2 x          A1A1

Note: Award A1 for numerator, A1 for denominator.

= ( sin x + cos x ) 2 ( cos x sin x ) ( cos x + sin x )      M1

= cos x + sin x cos x sin x       AG

Note: Apply MS in reverse if candidates have worked from RHS to LHS.

Note: Alternative method using tan 2 x and sec 2 x in terms of tan x .

[4 marks]

b.

METHOD 1

0 π 6 ( cos x + sin x cos x sin x ) d x        A1

Note: Award A1 for correct expression with or without limits.

EITHER

= [ ln ( cos x sin x ) ] 0 π 6   or   [ ln ( cos x sin x ) ] π 6 0        (M1)A1A1

Note: Award M1 for integration by inspection or substitution, A1 for  ln ( cos x sin x ) A1 for completely correct expression including limits.

= ln ( cos π 6 sin π 6 ) + ln ( cos 0 sin 0 )        M1

Note: Award M1 for substitution of limits into their integral and subtraction.

= ln ( 3 2 1 2 )        (A1)

OR

let  u = cos x sin x        M1

d u d x = sin x cos x = ( sin x + cos x )

1 3 2 1 2 ( 1 u ) d u        A1A1

Note: Award A1 for correct limits even if seen later, A1 for integral.

= [ ln u ] 1 3 2 1 2   or   [ ln u ] 3 2 1 2 1        A1

= ln ( 3 2 1 2 ) (  + ln 1 )        M1

THEN

= ln ( 2 3 1 )

Note: Award M1 for both putting the expression over a common denominator and for correct use of law of logarithms.

= ln ( 1 + 3 )        (M1)A1

 

METHOD 2

[ 1 2 ln ( tan 2 x + sec 2 x ) 1 2 ln ( cos 2 x ) ] 0 π 6       A1A1

= 1 2 ln ( 3 + 2 ) 1 2 ln ( 1 2 ) 0        A1A1(A1)

= 1 2 ln ( 4 + 2 3 )        M1

= 1 2 ln ( ( 1 + 3 ) 2 )        M1A1

= ln ( 1 + 3 )       A1

 

 

[9 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 3— Geometry and trigonometry » AHL 3.10—Compound angle identities
Show 39 related questions
Topic 5 —Calculus » AHL 5.15—Further derivatives and indefinite integration of these, partial fractions
Topic 3— Geometry and trigonometry
Topic 5 —Calculus

View options