User interface language: English | Español

Date May 2018 Marks available 2 Reference code 18M.1.SL.TZ1.T_15
Level Standard Level Paper Paper 1 (with calculator from previous syllabus) Time zone Time zone 1
Command term Find Question number T_15 Adapted from N/A

Question

Consider the functions  f ( x ) = x 4 2 and  g ( x ) = x 3 4 x 2 + 2 x + 6

The functions intersect at points P and Q. Part of the graph of  y = f ( x )  and part of the graph of  y = g ( x )  are shown on the diagram.

Find the range of f.

[2]
a.

Write down the x-coordinate of P and the x-coordinate of Q.

[2]
b.

Write down the values of x for which  f ( x ) > g ( x ) .

[2]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

[ 2 , [  or  [ 2 , ) OR  f ( x ) 2  or  y 2 OR  2 f ( x ) <      (A1)(A1) (C2)

Note: Award (A1) for −2 and (A1) for completely correct mathematical notation, including weak inequalities. Accept  f 2 .

[2 marks]

a.

–1 and 1.52 (1.51839…)     (A1)(A1) (C2)

Note: Award (A1) for −1 and (A1) for 1.52 (1.51839).

[2 marks]

b.

x < 1 , x > 1.52   OR  ( , 1 ) ( 1.52 , ) .    (A1)(ft)(A1)(ft) (C2)

Note: Award (A1)(ft) for both critical values in inequality or range statements such as  x < 1 , ( , 1 ) , x > 1.52  or  ( 1.52 , ) .

Award the second (A1)(ft) for correct strict inequality statements used with their critical values. If an incorrect use of strict and weak inequalities has already been penalized in (a), condone weak inequalities for this second mark and award (A1)(ft).

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 2—Functions » SL 2.2—Functions, notation domain, range and inverse as reflection
Show 83 related questions
Topic 2—Functions

View options