User interface language: English | Español

Date May 2021 Marks available 2 Reference code 21M.1.SL.TZ1.9
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 1
Command term Find Question number 9 Adapted from N/A

Question

A biased four-sided die, AA, is rolled. Let XX be the score obtained when die AA is rolled. The probability distribution for XX is given in the following table.

A second biased four-sided die, BB, is rolled. Let YY be the score obtained when die BB is rolled.
The probability distribution for YY is given in the following table.

Find the value of pp.

[2]
a.

Hence, find the value of E(X) E(X) .

[2]
b.

State the range of possible values of rr.

[1]
c.i.

Hence, find the range of possible values of qq.

[2]
c.ii.

Hence, find the range of possible values for E(Y)E(Y).

[3]
d.

Agnes and Barbara play a game using these dice. Agnes rolls die AA once and Barbara rolls die BB once. The probability that Agnes’ score is less than Barbara’s score is 1212.

Find the value of E(Y)E(Y).

[6]
e.

Markscheme

recognising probabilities sum to 11          (M1)

p+p+p+12p=1p+p+p+12p=1

p=27p=27           A1

 

[2 marks]

a.

valid attempt to find E(X) E(X)          (M1)

1×p+2×p+3×p+4×12p(=8p)1×p+2×p+3×p+4×12p(=8p)

E(X)=167E(X)=167           A1

 

[2 marks]

b.

0r10r1       A1

 

[1 mark]

c.i.

attempt to find a value of qq         (M1)

01-3q1013q1  OR  r=0q=13r=0q=13  OR  r=1q=0r=1q=0

0q130q13       A1

 

[2 marks]

c.ii.

E(Y)=1×q+2×q+3×q+4×rE(Y)=1×q+2×q+3×q+4×r (=2+2r=2+2r  OR  4-6q46q)         (A1)

one correct boundary value       A1

1×13+2×13+3×13+4×0(=2)1×13+2×13+3×13+4×0(=2) OR

1×0+2×0+3×0+4×1(=4)1×0+2×0+3×0+4×1(=4) OR

2+2(0)(=2)2+2(0)(=2) OR

2+2(1)(=4)2+2(1)(=4) OR

4-6(0)(=4)46(0)(=4) OR 4-6(13)(=2)46(13)(=2)

2E(Y)42E(Y)4       A1

 

[3 marks]

d.

METHOD 1

evidence of choosing at least four correct outcomes from

1&2, 1&3, 1&4, 2&3, 2&4, 3&41&2, 1&3, 1&4, 2&3, 2&4, 3&4         (M1)

67q+67r67q+67r  OR  3pq+3pr3pq+3pr  OR  pq+pq+p(1-3q)+pq+p(1-3q)+p(1-3q)pq+pq+p(13q)+pq+p(13q)+p(13q)         (A1)

solving for either qq or rr        M1

67(q+1-3q)=1267(q+13q)=12  OR  67(1-r3+r)=1267(1r3+r)=12  OR  3pq+3p(1-3q)=123pq+3p(13q)=12

        OR  3p(1-r3)+3pr=123p(1r3)+3pr=12

 

EITHER two correct values

q=524q=524  and  r=38r=38      A1A1

 

OR one correct value

q=524q=524  OR  r=38r=38      A1

substituting their value for qq or rr      A1

4-6(524)46(524)  OR  2+2(38)2+2(38)

 

THEN

E(Y)=114E(Y)=114      A1

 

METHOD 2 (solving for E(Y)E(Y))

evidence of choosing at least four correct outcomes from

1&2, 1&3, 1&4, 2&3, 2&4, 3&41&2, 1&3, 1&4, 2&3, 2&4, 3&4         (M1)

67q+67r67q+67r  OR  3pq+3pr3pq+3pr  OR  pq+pq+p(1-3q)+pq+p(1-3q)+p(1-3q)pq+pq+p(13q)+pq+p(13q)+p(13q)         (A1)

rearranging to make qq the subject      M1

q=4-E(Y)6q=4E(Y)6

3pq+3p(1-3q)=123pq+3p(13q)=12      M1

67×(4-E(Y)6)+67(1-3(4-E(Y)6))=1267×(4E(Y)6)+67(13(4E(Y)6))=12       A1

2(E(Y)-1)7=122(E(Y)1)7=12

E(Y)=114E(Y)=114       A1

 

[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 4—Statistics and probability » SL 4.7—Discrete random variables
Show 90 related questions
Topic 4—Statistics and probability

View options