Date | May 2021 | Marks available | 2 | Reference code | 21M.1.SL.TZ1.9 |
Level | Standard Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 1 |
Command term | Find | Question number | 9 | Adapted from | N/A |
Question
A biased four-sided die, AA, is rolled. Let XX be the score obtained when die AA is rolled. The probability distribution for XX is given in the following table.
A second biased four-sided die, BB, is rolled. Let YY be the score obtained when die BB is rolled.
The probability distribution for YY is given in the following table.
Find the value of pp.
Hence, find the value of E(X) E(X) .
State the range of possible values of rr.
Hence, find the range of possible values of qq.
Hence, find the range of possible values for E(Y)E(Y).
Agnes and Barbara play a game using these dice. Agnes rolls die AA once and Barbara rolls die BB once. The probability that Agnes’ score is less than Barbara’s score is 1212.
Find the value of E(Y)E(Y).
Markscheme
recognising probabilities sum to 11 (M1)
p+p+p+12p=1p+p+p+12p=1
p=27p=27 A1
[2 marks]
valid attempt to find E(X) E(X) (M1)
1×p+2×p+3×p+4×12p(=8p)1×p+2×p+3×p+4×12p(=8p)
E(X)=167E(X)=167 A1
[2 marks]
0≤r≤10≤r≤1 A1
[1 mark]
attempt to find a value of qq (M1)
0≤1-3q≤10≤1−3q≤1 OR r=0⇒q=13r=0⇒q=13 OR r=1⇒q=0r=1⇒q=0
0≤q≤130≤q≤13 A1
[2 marks]
E(Y)=1×q+2×q+3×q+4×rE(Y)=1×q+2×q+3×q+4×r (=2+2r=2+2r OR 4-6q4−6q) (A1)
one correct boundary value A1
1×13+2×13+3×13+4×0 (=2)1×13+2×13+3×13+4×0(=2) OR
1×0+2×0+3×0+4×1 (=4)1×0+2×0+3×0+4×1(=4) OR
2+2(0) (=2)2+2(0)(=2) OR
2+2(1) (=4)2+2(1)(=4) OR
4-6(0) (=4)4−6(0)(=4) OR 4-6(13) (=2)4−6(13)(=2)
2≤E(Y)≤42≤E(Y)≤4 A1
[3 marks]
METHOD 1
evidence of choosing at least four correct outcomes from
1&2, 1&3, 1&4, 2&3, 2&4, 3&41&2, 1&3, 1&4, 2&3, 2&4, 3&4 (M1)
67q+67r67q+67r OR 3pq+3pr3pq+3pr OR pq+pq+p(1-3q)+pq+p(1-3q)+p(1-3q)pq+pq+p(1−3q)+pq+p(1−3q)+p(1−3q) (A1)
solving for either qq or rr M1
67(q+1-3q)=1267(q+1−3q)=12 OR 67(1-r3+r)=1267(1−r3+r)=12 OR 3pq+3p(1-3q)=123pq+3p(1−3q)=12
OR 3p(1-r3)+3 pr=123p(1−r3)+3pr=12
EITHER two correct values
q=524q=524 and r=38r=38 A1A1
OR one correct value
q=524q=524 OR r=38r=38 A1
substituting their value for qq or rr A1
4-6(524)4−6(524) OR 2+2(38)2+2(38)
THEN
E(Y)=114E(Y)=114 A1
METHOD 2 (solving for E(Y)E(Y))
evidence of choosing at least four correct outcomes from
1&2, 1&3, 1&4, 2&3, 2&4, 3&41&2, 1&3, 1&4, 2&3, 2&4, 3&4 (M1)
67q+67r67q+67r OR 3pq+3pr3pq+3pr OR pq+pq+p(1-3q)+pq+p(1-3q)+p(1-3q)pq+pq+p(1−3q)+pq+p(1−3q)+p(1−3q) (A1)
rearranging to make qq the subject M1
q=4-E(Y)6q=4−E(Y)6
3pq+3p(1-3q)=123pq+3p(1−3q)=12 M1
67×(4-E(Y)6)+67(1-3(4-E(Y)6))=1267×(4−E(Y)6)+67(1−3(4−E(Y)6))=12 A1
2(E(Y)-1)7=122(E(Y)−1)7=12
E(Y)=114E(Y)=114 A1
[6 marks]