User interface language: English | Español

Date November 2019 Marks available 2 Reference code 19N.1.AHL.TZ0.H_5
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number H_5 Adapted from N/A

Question

Consider the equation  z 4 = 4 , where  z C .

Solve the equation, giving the solutions in the form  a + i b , where  a b R .

[5]
a.

The solutions form the vertices of a polygon in the complex plane. Find the area of the polygon.

[2]
b.

Markscheme

METHOD 1

| z | = 4 4 ( = 2 )        (A1)

arg ( z 1 ) = π 4        (A1)

first solution is  1 + i        A1

valid attempt to find all roots (De Moivre or +/− their components)        (M1)

other solutions are  1 + i 1 i 1 i        A1

 

METHOD 2

z 4 = 4

( a + i b ) 4 = 4

attempt to expand and equate both reals and imaginaries.        (M1)

a 4 + 4 a 3 b i 6 a 2 b 2 4 a b 3 i + b 4 = 4

( a 4 6 a 4 + a 4 = 4 ) a = ± 1 and  ( 4 a 3 b 4 a b 3 = 0 ) a = ± b        (A1)

first solution is  1 + i        A1

valid attempt to find all roots (De Moivre or +/− their components)        (M1)

other solutions are  1 + i 1 i 1 i        A1

 

[5 marks]

a.

complete method to find area of ‘rectangle'        (M1)

= 4       A1

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 1—Number and algebra » AHL 1.12—Complex numbers – Cartesian form and Argand diag
Show 43 related questions
Topic 1—Number and algebra

View options