User interface language: English | Español

Date November 2021 Marks available 2 Reference code 21N.3.AHL.TZ0.1
Level Additional Higher Level Paper Paper 3 Time zone Time zone 0
Command term Hence and Find Question number 1 Adapted from N/A

Question

In this question you will explore some of the properties of special functions f and g and their relationship with the trigonometric functions, sine and cosine.


Functions f and g are defined as fz=ez+e-z2 and gz=ez-e-z2, where z.

Consider t and u, such that t, u.

Using eiu=cosu+isinu, find expressions, in terms of sinu and cosu, for

The functions cosx and sinx are known as circular functions as the general point (cosθ, sinθ) defines points on the unit circle with equation x2+y2=1.

The functions f(x) and g(x) are known as hyperbolic functions, as the general point ( f(θ), g(θ) ) defines points on a curve known as a hyperbola with equation x2-y2=1. This hyperbola has two asymptotes.

Verify that u=ft satisfies the differential equation d2udt2=u.

[2]
a.

Show that ft2+gt2=f2t.

[3]
b.

fiu.

[3]
c.i.

giu.

[2]
c.ii.

Hence find, and simplify, an expression for fiu2+giu2.

[2]
d.

Show that ft2-gt2=fiu2-giu2.

[4]
e.

Sketch the graph of x2-y2=1, stating the coordinates of any axis intercepts and the equation of each asymptote.

[4]
f.

The hyperbola with equation x2-y2=1 can be rotated to coincide with the curve defined by xy=k, k.

Find the possible values of k.

[5]
g.

Markscheme

f't=et-e-t2                       A1

f''t=et+e-t2                       A1

=ft                       AG


[2 marks]

a.

METHOD 1

ft2+gt2

substituting f and g                      M1

=et+e-t2+et-e-t24

=et2+2+e-t2+et2-2+e-t24                      (M1)

=et2+e-t22  =e2t+e-2t2                      A1

=f2t                      AG

 

METHOD 2

f2t=e2t+e-2t2

=et2+e-t22                      M1

=et+e-t2+et-e-t24                     M1A1

=ft2+gt2                      AG


Note: Accept combinations of METHODS 1 & 2 that meet at equivalent expressions.


[3 marks]

b.

substituting eiu=cosu+isinu into the expression for f                      (M1)

obtaining e-iu=cosu-isinu                      (A1)

fiu=cosu+isinu+cosu-isinu2


Note: The M1 can be awarded for the use of sine and cosine being odd and even respectively.


=2cosu2

=cosu                      A1


[3 marks]

c.i.

giu=cosu+isinu-cosu+isinu2

substituting and attempt to simplify                      (M1)

=2isinu2

=isinu                      A1


[2 marks]

c.ii.

METHOD 1

fiu2+giu2

substituting expressions found in part (c)                     (M1)

=cos2u-sin2u  =cos2u                      A1

 

METHOD 2

f2iu=e2iu+e-2iu2

=cos2u+isin2u+cos2u-isin2u2                     M1

=cos2u                      A1


Note: Accept equivalent final answers that have been simplified removing all imaginary parts eg 2cos2u1etc


[2 marks]

d.

ft2-gt2=et+e-t2-et-e-t24                      M1

=e2t+e-2t+2-e2t+e-2t-24                      A1

=44=1                      A1


Note: Award A1 for a value of 1 obtained from either LHS or RHS of given expression.


fiu2-giu2=cos2u+sin2u                      M1

=1  (hence ft2-gt2=fiu2-giu2)                      AG


Note: Award full marks for showing that fz2-gz2=1, z.


[4 marks]

e.

        A1A1A1A1


Note: Award A1 for correct curves in the upper quadrants, A1 for correct curves in the lower quadrants, A1 for correct x-intercepts of (1, 0) and (1, 0) (condone x=1 and 1), A1 for y=x and y=x.



[4 marks]

f.

attempt to rotate by 45° in either direction               (M1)


Note: Evidence of an attempt to relate to a sketch of xy=k would be sufficient for this (M1).


attempting to rotate a particular point, eg (1, 0)               (M1)

(1, 0) rotates to 12,±12 (or similar)               (A1)

hence k=±12             A1A1


[5 marks]

g.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.
[N/A]
f.
[N/A]
g.

Syllabus sections

Topic 2—Functions » SL 2.3—Graphing
Show 53 related questions
Topic 5 —Calculus » SL 5.6—Differentiating polynomials n E Q. Chain, product and quotient rules
Topic 1—Number and algebra » SL 1.6—Simple proof
Topic 5 —Calculus » SL 5.7—The second derivative
Topic 1—Number and algebra » AHL 1.12—Complex numbers – Cartesian form and Argand diag
Topic 1—Number and algebra » AHL 1.13—Polar and Euler form
Topic 1—Number and algebra
Topic 2—Functions
Topic 5 —Calculus

View options